Sommersemester 2011

Technische Universität Berlin Fakultät II - Institut für Mathematik Vorlesung: Prof. Dr. Peter Bank

Übung: Antje Fruth

Sekretariat: Jean Downes, MA 7-2

## Übungen zur Vorlesung Finanzmathematik II

1.Blatt Übung: 19.04.11 Abgabe: 26.04.11

**Aufgabe 1:** Es sei  $(B_t)$  eine (Standard-)Brownsche Bewegung, man zeige

a) dass die Zufallsvariable

$$Z(\omega) := \int_0^1 B_s(\omega) \, ds$$

normalverteilt ist und bestimme Erwartungswert und Varianz

b) mit Hilfe des Satzes von Fubini, dass die Nullstellenmenge von  $(B_t)$  im Intervall [0,1],

$$N(\omega) := \{ t \in [0,1] : B_t(\omega) = 0 \} \in \mathcal{B}([0,1]),$$

eine Lebesgue-Nullmenge ist.

**Aufgabe 2**: Es seien  $A_t$  und  $B_t$ ,  $t \ge 0$ , zwei rechtsstetige Funktionen von lokal endlicher Variation. Man zeige:

i) Für die Stieltjes-Integrale bezüglich A und B gilt die folgende partielle Integrationsformel:

$$A_t B_t = A_0 B_0 + \int_{(0,t]} A_{s-} dB_s + \int_{(0,t]} B_s dA_s.$$

ii) Ist A stetig und  $f \in C^1(\mathbb{R})$ , so gilt

$$f(A_t) = f(A_0) + \int_0^t f'(A_s) dA_s.$$

iii) Ist A stetig differenzierbar, so gilt

$$\int_0^t B_s \, dA_s = \int_0^t B_s A_s' \, ds.$$

**Aufgabe 3**: Sei  $A_t$ ,  $t \in [0,1]$  eine reellwertige, rechtsstetige Funktion und  $\zeta_n$  eine monotone Folge von Partitionen von [0,1] mit  $\lim_{n\to\infty} |\zeta_n| = 0$ . Für eine stetige Funktion  $f:[0,1]\to\mathbb{R}$  definieren wir die Summen

$$S_n^f := \sum_{t_i, t_{i+1} \in \zeta_n} f(t_i) (A_{t_{i+1}} - A_{t_i}).$$

Man zeige: Konvergiert für  $n \to \infty$  die Folge  $S_n^f$  für jede stetige, reellwertige Funktion f auf [0,1] gegen eine reelle Zahl  $S^f$ , dann muss A von endlicher Variation sein.

Hinweis: Für den Beweis wende man den Satz von Banach-Steinhaus über die gleichmäßige Beschränktheit auf die Operatorfamilie  $(T_n), T_n : X \to \mathbb{R}$ ,

$$T_n f := \sum_{t_i, t_{i+1} \in \zeta_n} f(t_i) (A_{t_{i+1}} - A_{t_i}),$$

an. Als Urbild-Banachraum  $(X, \|\cdot\|)$  dient hier  $C([0,1]; \mathbb{R})$ , der Raum aller stetigen, reellwertigen Funktionen auf [0,1], aussgestattet mit der Supremumsnorm  $\|f\| = \sup_{x \in [0,1]} |f(x)|$ .