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Zusammenfassung

In klassischen Finanzmarktmodellen wird davon ausgegangen, dass Preise nicht davon
abhängen, wie viel gehandelt wird. In Wirklichkeit sind Märkte jedoch illiquide, so
dass die eigene Handelsstrategie den Preis nachteilig beeinflusst. In der vorliegenden
Arbeit wird dieser Preiseinfluss durch ein Modell eines Orderbuchs einer elektronischen
Börsenplattform beschrieben. Unter Verwendung dieses Modells betrachten wir das
Problem eines institutionellen Investors, der eine große Aktienposition in vorgegebener
Zeit kaufen möchte. Gesucht ist die optimale Zerlegung der Order, so dass die gesamten
erwarteten Preiseinflusskosten minimiert werden. Wir formulieren diese Fragestellung
des Investors als singuläres Kontrollproblem mit drei Zustandsvariablen. Verglichen
zu vorhandener Literatur liegt unser Hauptaugenmerk auf der sich zeitlich ändernden
Liquidität im Orderbuch. Dies erlaubt uns zu beschreiben, wie der Investor sich in
Zeiten relativ hoher bzw. niedriger Liquidität verhalten sollte.

Zunächst behandeln wir den deterministischen Fall, wo wir das Liquiditätsprofil am
Anfang des Zeithorizonts fixieren. Wie erwartet lässt sich der Zustandsraum in eine
Kauf- und Warteregion zerlegen. In diskreter Zeit können wir per Induktion nachwei-
sen, dass die Struktur dieser Regionen besonders intuitiv ist. In stetiger Zeit lässt sich
die Existenz optimaler Strategien zeigen und somit unser Resultat aus diskreter zu ste-
tiger Zeit überführen. In einigen Situationen können wir schließlich explizite Lösungen
unseres Optimierungsproblems angeben.

Im Anschluss betrachten wir den Fall stochastischer Liquidität, so dass optimale Stra-
tegien sich der Liquiditätsentwicklung anpassen. Es stellt sich als schwierig heraus,
dass unsere Kostenfunktion nicht in allen Fällen konvex in der Strategie des Investors
ist. Sobald wir diese Konvexität erzwingen, folgt die Eindeutigkeit optimaler Strategi-
en unmittelbar. Gleichzeitig können wir aber auch die Existenz optimaler Strategien
zeigen und wiederum das gewünschte Strukturresultat für die Kauf- und Warteregion
sicherstellen. Darüber hinaus lassen sich nicht konvexe Fälle stochastischer Liquidität
angeben, die das Strukturresultat verletzen.

Zu guter Letzt leiten wir durch Näherung der Zustandsvariablen durch kontrollier-
te Markovketten ein numerisches Schema her und beweisen dessen Konvergenz. Auf
diese Weise können wir die Wertfunktion und die zugehörigen optimalen Strategien
näherungsweise berechnen.





Abstract

Classical models in mathematical finance assume that an arbitrary amount of assets
can be traded at the current market price. But in reality, markets are illiquid such
that trading does have an adverse price impact. In this thesis, this price dependence
on trading strategies is described by a model of a limit order book which is relevant
in exchange electronic trading systems. Using this model, we consider a large investor
who wants to purchase a given amount of shares over a fixed interval of time. We look
for the optimal trading schedule such that the total expected costs due to the adverse
price impact are minimized. We phrase this optimal execution task of the large investor
as a singular control problem with three state dimensions. Compared to the existing
literature, our focus is on time-varying liquidity in the limit order book. This allows
us to derive how the large investor should trade in periods of comparatively high or
low liquidity.

We first treat the deterministic case, where we fix the liquidity profile at the initial
time. As one would expect, the state space separates into a no-trading and a trading
region. In discrete time, the structure of these regions is found to be particularly
intuitive. Together with the fact that we can prove the existence of optimal strategies
in continuous time, we can transfer our results from discrete to continuous time. We
derive closed-form solution under appropriate conditions.

We go ahead by considering the stochastic liquidity case, where optimal trading strate-
gies react to the liquidity available in the market. A major difficulty is that our cost
function may not be convex in the strategies. Enforcing this convexity, uniqueness
follows immediately, but we are additionally able to conclude the existence of optimal
strategies and again derive convenient structural results concerning the no-trading and
trading region. We also construct non-convex stochastic liquidity cases where these
structural results fail.

Finally, we establish a convergent numerical scheme which allows us to compute the
value function and optimal strategies by approximating the state space variables by a
controlled Markov chain.
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Introduction

Economic background

Classical models in mathematical finance assume frictionless markets, and prices do not
depend on the trading strategies of market participants. This is a good approach in case
of long-term considerations. However, on the time scale of a few trading days or less,
it becomes important to incorporate aspects of market microstructure. Due to limited
liquidity of real financial markets, trading large volumes moves prices, typically in an
unfavorable direction. See for example Harris (2003), Section 2.5, for an illustrative
trading story about this issue. The difference between the realized price and the price
before the trade is called price impact (or market impact).

In this thesis, we adapt the model of Obizhaeva and Wang (2006) and consider an
exogenous impact model with market resilience and stochastic liquidity. The model
is used to analyze the optimal execution problem of a large investor. To make this
more precise, let us give a short overview of the research within the field of market
microstructure, which forms the background for our considerations.

Market microstructure
In empirical market microstructure research, data of financial markets are used in order
to explain price formation, see e.g. Kraus and Stoll (1972) and Hasbrouck (1991). After
the introduction of electronic trading, limit order book data has extensively been used
for the same purpose, see Biais, Hillion, and Spatt (1995) and Potters and Bouchaud
(2003). During the last decade, hardware improvements and the developement of
high-speed communication have led to the acceleration of exchange trading such that
nowadays, the time between order executions is of the order of a few milliseconds. For
such high-frequency data, a new field of literature including Ait-Sahalia and Yu (2008)
establishes appropriate statistical and econometric tools. These results are needed for
the validation and calibration of the mathematical market microstructure models and
execution strategies which we will develop in this thesis.

Non-empirical research
Within the non-empirical market microstructure research, there is quite a rich literature
dealing with price impact modeling. The first type of these market microstructure
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models can be called endogenous. Their focus is on explaining and deriving price
impact. To do so, they take into account the interaction of all market participants
such as market makers as well as informed and uninformed agents. Information and
inventory play a key role. Prominent examples include the model of Kyle (1985),
where the impact turns out to be permanent and fully affects all consequent trades,
and Easley and O’Hara (1987), where the impact partly recovers over time. Hence, the
endogenous impact models explain the dynamics behind price impact formation, and
they can be seen as a support for the exogenous models that we want to concentrate
on in the sequel.

Exogenous impact models
A second approach in the field of price impact modeling deals with exogenous models.
The dependence of the price impact on the trading strategy and other parameters are
fixed at the very beginning and then used in order to find the optimal strategy of a
large investor. Gokay, Roch, and Soner (2010) have recently written a survey on this
field of exogenous impact models. Papers dealing with the hedging problem of a large
investor include Frey (1998), Cetin, Jarrow, Protter, and Yildirim (2004), Bank and
Baum (2004) and Rogers and Singh (2010). In the context of hedging, one typically
thinks of maturities of a few months. By contrast, this thesis is concerned with the
large investor’s optimal execution problem, where the time horizon is of the order of
days or minutes.

Optimal execution of a large investor
An overview of price impact models that are studied in the optimal execution literature
is given by Gatheral (2010). The optimal execution problem has a typical real-life ap-
plication, where an investor wants to build up (analogously liquidate) an asset position
over a fixed period of time. An example could be the case of a bank that borrowed
shares to short an asset and now needs to cover its short position in order to return
these shares to its broker at the end of the current trading day. Thus, a typical task
would be to buy, for instance, five percent of the average daily volume of a stock
within the next two hours. In this case, it would not be advisable to trade the entire
order in one gulp at the initial time, since this high liquidity demand would result in
a tremendous price increase. Due to price recovery effects called resilience, these price
impact costs can be decreased considerably by spreading out the order over a longer
time interval. This leads to a challenging optimization problem, where one has to find
the trade-off between exploiting the price recovery and the urgency to buy due to the
fixed time horizon.

The mathematical consideration of such an optimal execution problem is a relatively
young field. Bertsimas and Lo (1998) are the first to minimize the total impact costs
in the optimal execution problem in a discrete time, linear impact model. Huberman
and Stanzl (2004) combine both permanent impact, corresponding to zero resilience,
and impact with instantaneous recovery. They show that the permanent impact has
to be linear to rule out arbitrage. However, the optimal trade allocation does not only
depend on the chosen impact model, but also on the risk criterion of the investor. For
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instance, the investor has to be concerned about the trade-off between the prevention
of price impact and the risk of the deviation of the fundamental price from the initial
asset price due to external influences. First suggestions into this direction using a model
with infinite resilience, i.e. instantaneous recovery, have been made by Almgren and
Chriss (2001) and Almgren (2003). A mean-variance cost criterion is introduced. Due
to its tractability, this model by Almgren is popular in practice. With the same model,
Schied and Schöneborn (2009) go further and replace the mean-variance criterion by a
general utility function of the large investor. In the sequel, we consider extensions to
models that in particular have finite resilience such that for mathematical tractability,
we assume a risk-neutral investor, who only takes into account the expected price
impact costs instead of its expectation and variance.

The Obizhaeva and Wang model
Like Almgren and Chriss (2001) and the corresponding follow-up papers, the price
impact suggested by Obizhaeva and Wang (2006) belongs to the exogenous models and
is used to discuss the optimal execution problem. Beyond that, it has some flavor of an
endogenous model, since the considered price impact is derived from a simplified limit
order book model. This approach allows a more transparent specification of a formula
for the impact. Moreover, the resulting optimal execution strategies can be illustrated
in the limit order book framework. In particular, the Obizhaeva and Wang (2006)
model incorporates the empirically well established resilience effect; see, e.g., Biais,
Hillion, and Spatt (1995), Potters and Bouchaud (2003), Bouchaud, Gefen, Potters,
and Wyart (2004), and Weber and Rosenow (2005). Price impact resulting from a
large trade does not recover immediately, but gradually as liquidity providers position
fresh limit orders in the book. For more literature on limit order books, we refer to
Cont, Stoikov, and Talreja (2010) and the references therein. Today the predominant
amount of trading is done electronically and in doing so, is channeled through limit
order books.

Several authors considered an extended version of the Obizhaeva and Wang (2006)
impact model. For example Alfonsi, Fruth, and Schied (2010), Predoiu, Shaikhet, and
Shreve (2011) and Gatheral, Schied, and Slynko (2010) allow for a price impact which
is non-linear in the number of shares traded. The work of Alfonsi, Schied, and Slynko
(2009), Gatheral, Schied, and Slynko (2009) and Weiss (2010) focuses on a more general
resilience than in the original model.

The main goal of this thesis is to extend the Obizhaeva and Wang (2006) model by
introducing stochastic liquidity effects and to analyze the consequences of this kind of
liquidity risk. In the following, let us explain this in more detail.
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Economic contribution

All of the above mentioned extensions of Obizhaeva and Wang (2006) stick to the
assumption that the order book shape stays constant over time and that the resilience
is determinisitic. In this thesis, we take these two liquidity features to be stochastic.
A significant difference between order book depth and resilience is the information
available to traders: While the order book depth is visible in many limit order book
markets, the resilience is not directly observable and needs to be inferred over time from
the evolution of market prices. Due to these informational differences, we deal with
the random depths analysis most of the time. But some basic ideas on the stochastic
resilience case are also given at the end of this thesis.

The main focus of this thesis is on models with stochastic depth and deterministic
resilience. The order book shape depends on the activity of all market participants
and should therefore be modeled using a stochastic process instead of being constant
over time. As a first step towards this stochastic depth analysis, we address the case
of deterministically varying depth. This is interesting in its own right, since it is, e.g.,
a well-established empirical fact that market activity is U-shaped, i.e., there is less
activity in the middle of a trading day than at the beginning and end. See for instance
Lorenz and Osterrieder (2009). We go ahead by dealing with the stochastic case. To
the best of our knowledge, similar attempts in different settings have only been made
by Esser and Mönch (2003), Walia (2006), Roch (2009) and Almgren (2009).

We discuss the optimal execution problem with stochastic depth both in discrete and
continuous trading time. From a qualitative point of view, we get the following eco-
nomic result: Depending on the applied stochastic liquidity process, optimal strategies
can both be aggressive or passive in the liquidity. By aggressive, as opposed to passive
in the liquidity, we mean that the large investor trades intensively, when there is a
lot of liquidity available in the market, and suspends trading, when liquidity is scarce.
Astonishingly, it is not always optimal to trade aggressive in the liquidity. We get ag-
gressive in the liquidity trading, when the liquidity process is mean-reverting. Without
mean-reversion, there is no characteristic level that one could use to judge the current
liquidity in the market such that the aggressive in the liquidity behavior might not
hold. Therefore it is essential to use reasonable depth dynamics as a model ingredient
in order to get reasonable strategies as an output of the optimization procedure. From
a quantitative point of view, we can in some deterministic cases explicitly calculate
the optimal strategy. For all other cases, we develop rigorous numerical procedures to
calculate optimal strategies.

In total, we find a price impact model, incorporating stochastic limit order book depth
dynamics, that can be used in algorithmic trading. The calibration can be realized
by using empirically observable limit order book data. For the calibration of resilience
see Large (2007). We can describe and numerically calculate the trading strategy and
minimal expected costs of the large investor in the optimal execution problem. Com-
pared to the deterministic optimal strategy in the basic model with constant liquidity
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and essentially constant trading speed, our execution trajectories respond optimally to
the stochastically varying depth in the market. Hence, the scenario dependent trajec-
tories can, e.g., have flat stretches where it is optimal not to trade at all. They can
considerably outrun or fall behind the linear trajectory of the constant liquidity case.

In the last part of this thesis, we consider constant depth and the resilience is assumed
to be either high or low with a given a priori probability distribution. By observing
the price evolution after the execution of a market order, the estimate of resilience
can be updated over time: If market prices recover quickly, then resilience is likely
to be high, whereas a slow market price recovery indicates a low resilience. However,
market price evolution is not purely driven by resilience, but also by random price
changes. Thus, a quick price recovery can also be the result of a small resilience and a
favorable fundamental price move. We find that the optimal trade execution strategy
is aggressive in the money : If prices move in a favorable direction, i.e., price recovery
is quick, then the believed likelihood of a high resilience is increased. Therefore trade
execution is accelerated in order to reduce market risk. If however prices move in
an unfavorable direction, then trading is slowed down, since cost estimates for quick
liquidation are corrected upwards. This behavior is in line with traders’ intuition: If
market prices move unfavorably during a trade execution, then this may be caused by
the trader pushing too hard for quick execution and the trader should thus slow down
his trading.

Mathematical results

In Chapter 1 to 3 we discuss our limit order book model with time-varying depth. We
start by setting up our risk-neutral investor optimal execution framework, which we
consider both in discrete and continuous trading time. It turns out that the following
issues make this optimal control problem mathematically challenging: First of all, we
need to account for the constraint that the order has to be finished at the final time.
Second, the resilience effect makes the price impact not only dependent on the current,
but also on earlier trades of the large investor. Just as in Obizhaeva and Wang (2006),
basic model assumptions guarantee that this dependence can be aggregated into a
process that keeps track of the remaining price impact due to earlier trades. The main
difference and difficulty compared to Obizhaeva and Wang (2006) is the fact that we
go beyond deterministic controls. We have to include adapted trading strategies in
order to account for stochastic liquidity.

As in Obizhaeva and Wang (2006), it is necessary to allow not only absolutely con-
tinuous processes, but actually to use general càglàd processes of bounded variation
to describe our trading trajectories. This is due to the fact that our model turns out
to lead to a singular control problem. The corresponding nonlinear Hamilton-Jacobi-
Bellman (HJB) equation is not accessible by standard literature on partial differential
equations.
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Therefore, special methods have to be used in the analysis of this problem. Indeed, as in
the examples documented, e.g., in Benes, Shepp, and Witsenhausen (1980) and Davis
and Norman (1990), we can state closed form solutions only under specific assumptions.

Our considered value function has a four-dimensional domain. It depends on time and
three additional state variables: The price impact due to earlier trades, the shares left
to be traded and the current depth level of the order book. Corresponding to intuition,
one can show that the value function, representing the minimal purchasing costs, is
decreasing in the depth level and resilience speed as well as increasing in the other
three mentioned dimensions. Due to the time-varying nature of the liquidity, the cost
function underlying the value function is not necessarily convex in the strategy. This
makes the analysis rather delicate.

In Chapter 1, it turns out that our model assumptions enable us to simplify the task of
minimizing the expected costs in several perspectives. Under some mild assumptions on
the best bid and ask price, we can show that it is never optimal to trade in the opposite
direction, i.e., when the overall goal is to purchase shares, then there is no selling in
between. Therefore we can restrict our model to only one side of the order book. But
this simplification comes at the cost that we additionally need to constrain our optimal
strategy set to monotone trajectories. Having a risk-neutral investor and assuming the
fundamental asset price to be a martingale, we can without loss of generality set the
fundamental price to zero. The same is true for the permanent price impact, since we
assume it to be a constant coefficient being multiplied by the number of shares. Due to
arbitrage arguments, this is a reasonable and common assumption as, e.g., explained in
Huberman and Stanzl (2005). Another important simplification of the problem results
from the assumption that the limit order book is block-shaped, i.e., there is the same
number of shares available at each price tick. As a result, we can show that the domain
of the value function can indeed be reduced to three dimensions by condensing the first
two state variables. More precisely, we do not have to consider the number of shares
left to be traded and the price impact due to earlier trades separately, but only the
ratio of these two values is important.

Although we do not use it in our following arguments, we formally write down the
HJB equation as a guidance. As usual for a singular control problem, it is a variational
inequality. We can identify a trading and a no-trading region. In Section 2.1, we
define these two regions via the value function and formulate a conjecture concerning
the structure of these regions: Intuitively, it should be clear that for fixed time and
corresponding order book depth, one should be situated in the no-trading region for
low and in the trading region for high values of the number of shares over price impact
ratio. There should be a time and depth dependent positive barrier between these
two regions. It represents the free boundary corresponding to our singular control
problem. Astonishingly, it turns out that this conjecture is not always true as the
examples collected in Section 2.5 show. Therefore, it is one of our main intentions
to identify the situations in which the conjecture holds. We check it separately for
different dynamics of the order book depth.
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Section 2.2 starts by recapitulating the constant depth discrete and continuous time
optimal strategies given in Obizhaeva and Wang (2006) and Alfonsi, Fruth, and Schied
(2007), reinterprets them in our framework of trading and no-trading regions and
slightly enriches them by additionally stating the case of nonzero initial impact due to
earlier trades. Section 2.2 goes ahead by discussing more general deterministic dynam-
ics of the order book depth. Exploiting the fact that the value function is piecewise
quadratic, we first prove by backward induction that the barrier conjecture holds in
discrete time. A barrier between the no-trade and the trade region exists. It uniquely
determines the optimal strategy and its numerical computation is straightforward. For
continuous trading time and continuous depth dynamic, we get the existence of an
optimal strategy by Helly’s Theorem. Showing convexity of some functions involved in
the discrete time induction, we get uniform convergence as the distance between the
discrete trading instances decreases. This way, we can transfer the barrier result from
discrete to continuous time. In some situations, one can then use the Euler-Lagrange
formalism in order to find a closed form solution of the continuous time barrier func-
tion. To the best of our knowledge, it is not clear how to incorporate the constraint
of monotone trajectories into the formalism. We therefore only consider a modified
problem with the larger optimization set of not necessarily monotone trajectories. The
solutions of the original and the modified optimization must coincide, when the mod-
ified problem yields a monotone optimal trajectory. We identify these situations in
terms of the applied deterministic depth profile.

Section 2.3 deals with the case of the order book depth being a geometric Brownian
motion. This choice seems natural, since it is one of the simplest positive diffusions. In
discrete time we can again use backward induction in order to prove that our conjecture
holds in a lot of situations. But as opposed to the deterministic case, it turns out that
the conjecture can be violated in cases of time-dependent resilience speed or drift of
the geometric Brownian motion. Moreover, we introduce the already mentioned notion
of aggressive and passive in the liquidity trades and it turns out that the geometric
Brownian motion produces passive in the liquidity behavior. Therefore, it does not
seem to be a particularly well suited model for the depth.

This motivates Section 2.4. We consider more general diffusion dynamics with time
and state-dependent drift and volatility as our model input. We find sufficient condi-
tions in terms of the resilience as well as these drift and volatility parameters such that
our cost function is convex in the strategy. This guarantees unique optimal strategies
and the existence follows with a Komlós argument. Notably, this convexity also suf-
fices to then prove the barrier conjecture from above in discrete and continuous time.
This is one of our main results. We also analyze the mentioned sufficient conditions.
For the deterministic and geometric Brownian motion case, these conditions from Sec-
tion 2.4 are clearly more restrictive than the sufficient conditions for our conjecture
from Section 2.2 and 2.3 respectively. For the mean-reverting, positive Cox-Ingersoll-
Ross process, however, we find that we can apply the results from Section 2.4 when
the mean-reversion speed is small compared to the resilience and the volatility in turn
being small compared to the mean-reversion speed.
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In Section 2.5 we utilize the insights from Section 2.2 to 2.4 in order to construct situ-
ations where the barrier conjecture does not hold. One can prove that the conjecture
always holds when trading is only allowed at two trading instances. We know from
Section 2.2 that it holds for deterministic depth dynamics. But for a specific binomial
model with two states of the world for the depth and three trading instances, we can
show that the conjecture does not hold. This counterexample can also be extended
to continuous time. For the time-inhomogeneous geometric Brownian motion and the
Cox-Ingersoll-Ross process, we find such counterexamples at least in discrete time.

We learn from Chapter 2 that it is hard to find structural results for the trade and
no-trade region. Only in very specific cases we can state their shape explicitly. This
motivates to discuss numerical issues of our singular control problem in Chapter 3.
Our aim is to approximate the value function and the free boundary. To the best
of our knowledge, there is no systematic approach that treats numerical schemes for
HJB variational inequalities in several dimensions directly. Therefore, we use the well-
established Markov chain approximation method introduced by Kushner and his co-
authors as an alternative to a verification argument. An introduction to the method is
given in Kushner and Dupuis (2001). Instead of approximating the HJB equation, the
control problem itself is approximated. In other words, the value function is approxi-
mated on a grid and the state space dynamics are replaced by transition probabilities
between the grid points. A finite difference scheme of the HJB equation is used to
choose these transition probabilities consistently with the original state dynamics.

Closely following the lines of Kushner and Martins (1991) and the related work of Bud-
hiraja and Ross (2007), we show that the approximated value function converges to the
original one as the grid size decreases to zero. The proof is by probabilistic methods
and it turns out that the positivity of the transition probabilities is the only assump-
tion for the convergence result. The essential steps in the proof are to truncate the
state space and to use tightness results. Due to the control problem being singular, it is
necessary to do a time rescaling. Both Kushner and Martins (1991) and Budhiraja and
Ross (2007) consider an infinite horizon singular control problem with two-dimensional
state space and two fixed vectors to control the state space dynamics. In our case, we
need to adjust their convergence proof, since our problem has a finite time horizon, a
three-dimensional state space and most notably the control direction is state space de-
pendent. Moreover, our cost structure is qualitatively different, which e.g. complicates
the state space truncation. Although the HJB equation is not used in the proof at
all, it turns out in Section 3.2.2 that the numerical scheme resulting from the Markov
chain method is in some sense equivalent to the implementation of the HJB equation
by a finite difference scheme.

Chapter 4 contains the stochastic resilience case. We focus on economic and qualitative
findings. From a mathematical point of view, we stick to a model with three trading
instances such that our optimization can be done by direct calculations. The filtering
aspects turn out to be rather involved and make an insightful analysis of more complex
models seem beyond reach with today’s mehtods.
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Chapter 1

Model description and preparations

In practice, very large orders are often split into a number of consecutive orders to
reduce the overall price impact. Hence, the question at hand is to determine the size
of the individual orders so as to minimize a cost criterion. We call this the optimal
execution problem of a large investor and consider the specific case where this investor
is risk-neutral. In order to discuss this optimization problem, we are going to specify
a model both for the unaffected price and the price impact. The price impact model,
that we are going to use, allows for the price impact to be stochastic. This is our main
contribution. Our model is based on the work of Obizhaeva and Wang (2006). The
main idea is to derive the impact model from a limit order book.

1.1 Order book dynamics and assumptions

The considered one-asset model derives its price dynamics from a limit order book that
is exposed to repeated market orders of a large investor (sometimes referred to as the
trader). A limit order book is a collection of the limit orders of all market participants
in an electronic market. Each limit order has the number of shares, that the market
participant wants to trade, and a price per share attached to it. The price represents a
minimal price in case of a sell and a maximal price in case of a buy order. Compared
to a limit order, a market order does not have an attached price per share, but instead
is executed immediately against the best limit orders waiting in the book. Thus, there
is a tradeoff between price saving and immediacy when using limit and market orders.

The goal of the investor is to use market orders in order to purchase a large amount x
of shares within a certain time period [0, T ], where T typically ranges from a few hours
up to a few trading days. On this macroscopic time scale, the restriction to market
orders is not severe. A subsequent consideration of small time windows including limit
order trading is common practice in banks. See Naujokat and Westray (2011) for a
discussion of a large investor execution problem where both market and limit orders

11



12 Model description and preparations

are allowed. In our case, emphasis is on buy orders, and we first concentrate on the
upper part of the limit order book. It consists of limit sell orders offered at various ask
prices. The lowest ask price is called the best ask price.

Suppose first that the trader is not active. We assume that the corresponding unaf-
fected best ask price Au is a càdlàg martingale on a given filtered probability space
(Ω,F , (Ft)t∈[0,T ],P). Moreover, Au

0 = A0 for a constant A0 and A
u is an H1-martingale,

i.e. E
√

[Au, Au]T < ∞, or, equivalently, E[supt∈[0,T ] |Au
t |] < ∞. This assumption in-

cludes in particular the case of the Bachelier model, i.e., Au
t = Au

0 + σWA
t for an (Ft)-

Brownian motion WA, as considered in Obizhaeva and Wang (2006). We emphasize,
however, that we can take any H1-martingale and hence use, e.g., a driftless geometric
Brownian motion, which avoids the counterintuitive negative prices of the Bachelier
model. Moreover, we can allow for jumps in the dynamics of Au so as to model the
trading activities of other large investors in the market.
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Figure 1.1: Time series of market depth in the order book of Fortis, Euronext, Amsterdam,
August 1, 2008. Taken from Hautsch and Huang (2010).

Let us consider real-life order book dynamics in the price per share and in time. Fig-
ure 1.1 taken from Hautsch and Huang (2010) shows a typical dynamic. The depth,
represented by the number of shares on the first and third ask level or ask tick respec-
tively, is quite volatile during one trading day. Moreover, the depth is mean-reverting
and there is evidence for co-movement between the individual tick levels. Although
the order book height behind the market is typically greater than that directly at the
spread, we follow Obizhaeva andWang (2006) in assuming a constant ask price distribu-
tion in our model: The number of shares offered at prices in the interval [Au

t , A
u
t +△A]

is given by qt · △A for the order book height qt > 0. Here, we are interested in the
dynamics of the order book in time. That is why we assume the book to be block-
shaped meaning that the same number of shares qt is available at each price level.
Cont, Kukanov, and Stoikov (2010) empirically find that such a block shape performs
well. See Alfonsi, Fruth, and Schied (2010) and Predoiu, Shaikhet, and Shreve (2011)
for non-constant shapes of the book in the price per share. They conclude that the
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optimal execution strategy of the investor is robust with respect to the order book
shape. In Obizhaeva and Wang (2006), Alfonsi, Fruth, and Schied (2010) and Predoiu,
Shaikhet, and Shreve (2011) the shape is assumed to stay constant over time. That is
in Obizhaeva and Wang (2006) the order book height is chosen as a constant qt ≡ q
while we assume an exogenously given stochastic dynamic for qt.

Suppose for instance that our trader places a buy market order of ξ0 > 0 shares at
time t = 0. This market order consumes all shares located at prices between A0

and A0 +D0+, where D0+ is determined by

D0+ · q0 = ξ0.

Consequently, the ask price is shifted up from A0 to

A0+ := A0 +D0+.

Let us denote by At the actual best ask price at time t, i.e., the ask price after taking
the price impact of previous buy market orders of the trader into account. Define

Dt := At − Au
t

as the price impact or extra spread caused by the past actions of the trader. An-
other buy market order of ξt > 0 shares now consumes all the shares offered at prices
between At and

At+ := At +Dt+ −Dt = Au
t +Dt+,

where Dt+ is determined by the condition

(Dt+ −Dt) · qt = ξt.

Thus, the process D captures the impact of market orders on the current best ask
price, see Figure 1.2.

Number of shares

Price per share
Bt A

u

t
0

LOB
height qt

A =A +Dt+ t t+

u
A=A +Dt t t

u

Resilience

market buy
order:
sharesxt

extra
limit buy orders     spread         spread                limit sell orders

Figure 1.2: Snapshot of the block-shaped order book model at time t.

We still need to specify how D evolves when our trader is inactive between market or-
ders. It is a well established empirical fact, that order books exhibit a certain resilience
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as to the price impact of large block orders. That is, only a fraction of the immediate
impact ξt/qt is permanent, while the remaining fraction is temporary and decays to
zero. One can distinguish spread and depth resilience, see e.g. Kempf, Mayston, and
Yadav (2007). In modeling this resilience, we assume spread resilience to be prevail-
ing and consider an exponential recovery of the temporary part of the impact with a
fixed time-dependent, deterministic recovery rate ρt, which we assume to be a strictly
positive integrable function on [0, T ]. Such an extension of their original model with
constant recovery rate was suggested by Obizhaeva and Wang (2006, Section 8.1).
Weiss (2010) also considers exponential resilience and shows that the results of Alfonsi,
Fruth, and Schied (2010) and in particular Obizhaeva and Wang (2006) can be adapted
when the recovery rate depends on the trade size of the large investor. Alfonsi, Schied,
and Slynko (2009) recently considered more general deterministic decay functions than
the exponential one in a model with constant order book height. For a discussion of a
stochastic recovery rate ρ, we refer to Chapter 4.

In our model, the price impact at time s ≥ t of a buy market order ξt > 0 placed at
time t is assumed to be

γξt +Kte
−

∫ s
t
ρu duξt,

where the positive constant γ quantifies the magnitude of the permanent impact andKt

is the temporary impact coefficient. Notice that this temporary impact model is differ-
ent from the one which is used, e.g., in Almgren and Chriss (2001) and Almgren (2003).
It slowly decays to zero instead of vanishing immediately and thus prices depend on
previous trades. For the order book height we have

qt = (γ +Kt)
−1.

Throughout this thesis, we discuss results for various assumptions on K. All types of
assumptions on this illiquidity process K are collected here in order to refer to them
in the following chapters.

• Assumption Basic: (Kt)t∈[0,T ] is a strictly positive, adapted, integrable process
with first moments.

• Assumption Const: K is constant to κ > 0.

• Assumption Determ: K : [0, T ] → (0,∞) is deterministic and Lebesgue
integrable.

• Assumption CtsDeterm: K : [0, T ] → (0,∞) is deterministic and continuous.

• Assumption Smooth: K : [0, T ] → (0,∞) is deterministic, two times continu-
ously differentiable and ρ is continuously differentiable.
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• Assumption GBM: K is a geometric Brownian motion, K0 > 0,

dKt = µ̄(t)Ktdt+ σ̄(t)KtdW
K
t

for an (Ft)-Brownian motionWK and µ̄, σ̄2 deterministic, integrable functions.

• Assumption SpecialGBM: K is a geometric Brownian motion, K0 > 0,

dKt = µ̄(t)Ktdt+ σ̄(t)KtdW
K
t

for an (Ft)-Brownian motionWK and µ̄, σ̄ deterministic, integrable functions.

For fixed trading instances 0 = t0 < ... < tN = T , either
∫ T

tn
(µ̄s + ρs) ds ≤ 0

for all n = 0, ..., N − 1 or
∫ tn+1

tn
(µ̄s + ρs) ds > 0 for all n = 0, ..., N − 1.

• Assumption Diff: K is a time-inhomogeneous diffusion, K0 > 0,

dKt = µ(t,Kt)dt+ σ(t,Kt)dW
K
t

for an (Ft)-Brownian motion WK and µ, σ : [0, T ]× (0,∞) → R such that the
stochastic differential equation has a strong solution which is unique in law,
has first moments and is strictly positive, integrable a.s.

• Assumption SpecialDiff: K is a time-inhomogeneous diffusion, K0 > 0,

dKt = µ(t,Kt)dt+ σ(t,Kt)dW
K
t

for an (Ft)-Brownian motion WK and µ, σ : [0, T ]× (0,∞) → R such that the
stochastic differential equation has a strong solution which is unique in law,
has first moments and is strictly positive, integrable a.s. Furthermore,

i) ηt :=
2ρt
Kt

+ µ(t,Kt)

K2
t

− σ2(t,Kt)

K3
t

> 0 for all t ∈ [0, T ],

ii) E

[
supt∈[0,T ] K

2
t

inft∈[0,T ] Kt

]
<∞,

iii) E

[(∫ T

0
|ηt|dt

) (
supt∈[0,T ]K

2
t

)]
<∞.

• Assumption HomogDiff: K is a time-homogeneous diffusion, K0 ≥ 0,

dKt = µ(Kt)dt+ σ(Kt)dW
K
t

for an (Ft)-Brownian motion WK , continuous µ and locally bounded σ :
[0,∞) → R such that the stochastic differential equation has a strong solution
which is unique in law, positive, integrable a.s. and E

[
supt∈[0,T ]Kt

]
<∞.

• Assumption SpecialCIR: K is a Cox-Ingersoll-Ross process, K0 > 0,

dKt = µ̄(K̄ −Kt)dt+ σ̄
√
KtdW

K
t

for an (Ft)-Brownian motion WK . Further assume strictly positive, constant
resilience speed ρ,

2ρ ≥ µ̄ > 0 and µ̄K̄ > 2σ̄2.
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Assumption Basic is the basic assumption that follows from all other given assumptions
on K. It states the minimal requirements for our problem to be economically sensible
and well-defined. In Section 2.2, we consider the special case of deterministic K.
First of all, we summarize the case of constant K. We then work under Assumption
Determ and consider discrete trading time. For the deterministic continuous time
case, we need Assumption CtsDeterm for the existence of optimal strategies. Having
continuously differentiable processes K, we can in some cases explicitly compute these
optimal strategies.

In Section 2.3, we work under Assumption SpecialGBM in order to characterize optimal
strategies in discrete time for K being a geometric Brownian motion. Section 2.4 deals
with both discrete and continuous time trading and quite general time-inhomogeneous
diffusions for K. In this context, Assumption SpecialDiff i), ii), iii) is used in order to
prove existence and uniqueness of optimal strategies. Assumption HomogDiff is applied
in the numerical treatment of our optimization problem in Section 3.1. The example
of a Cox-Ingersoll-Ross process in Assumption SpecialCIR both satisfies Assumption
SpecialDiff and HomogDiff and is used for some illustrations in Section 3.3.

Let us continue with the model specification. The process D can be computed as the
cumulative price impact of all past buy market orders. That is, if buy market orders ξtn
are placed at times tn, then

Dt = γ
∑

tn<t

ξtn +
∑

tn<t

Ktne
−

∫ t

tn
ρs dsξtn .

We want to formulate our model for general trading strategies in continuous time and
get

dDt = −ρt(Dt − γΘt)dt+ (γ +Kt)dΘt

with the adapted process (Θt) of finite variation describing the number of shares that
the trader holds at time t. Notice that the process D depends on Θ, although this is
not explicitly marked in its notation.

Let us now go ahead by describing the cost minimization problem of the trader. When
placing a single buy market order of size ξt ≥ 0 at time t, he purchases at prices Au

t +d,
with d ranging from Dt to Dt+, see Figure 1.2. Due to the block-shaped limit order
book, the total costs of the buy market order amount to

(Au
t +Dt) ξt +

Dt+ −Dt

2
ξt = (Au

t +Dt) ξt +
ξ2t
2qt

.

In other words, the total costs are the number of shares times the average price per
share (Au

t +Dt +
ξt
2qt

).

Let

At :=
{

Θ : Ω× [t, T+] → [0,∞)

Fs − adapted, increasing, bounded, càglàd with Θt = 0 a.s.
}



1.1 Order book dynamics and assumptions 17

be the set of increasing strategies Θ with △Θs := Θs+ − Θs. In particular, trading
in rates and impulse trades are allowed. Notice that a strategy from At consists of a
left-continuous process (Θs)s∈[t,T ] and an additional random variable ΘT+ with △ΘT =
ΘT+ −ΘT ≥ 0 being the last trade of the strategy. Denote by

At(x) := {Θ ∈ At|ΘT+ = x a.s.} (1.1)

the admissible strategies that build up a position of x ∈ [0,∞) shares by time T almost
surely.

Up until now, we have only described the effect of buy orders on the ask side of the
order book. When a client of a financial institution wants to purchase x > 0 shares up
to time T , a restriction to buy orders is not only plausible, but is also a necessity due to
legal issues or a requirement of the client. In the following, we also give a mathematical
argument showing that under mild assumptions it is not beneficial to sell.

Assume that we keep track of Θ, Θ̃ ∈ A0, where Θ is the number of shares traded by
market buy orders and Θ̃ represents the shares that the trader has sold using market
sell orders. Analogously to buy orders, sell orders are executed at the best bid price Bt

minus the ad-hoc impact △Θ̃t

2qt
. We allow the best bid to depend on the unaffected best

ask and the strategy (Θ, Θ̃) of the large investor as long as it satisfies (1.5).

Our aim is to minimize the total expected costs

inf
Θ,Θ̃∈A0,ΘT+−Θ̃T+=x

E

[∫

[0,T ]

(
At +

△Θt

2qt

)
dΘt −

∫

[0,T ]

(
Bt −

△Θ̃t

2qt

)
dΘ̃t

]
(1.2)

with

At = Au
t +Dt

and the martingale Au and the ask side impact D being described above. That is we
imagine the considered large investor to be risk-neutral and we allow his optimal strat-
egy to consist of both sell and buy orders. But it turns out that under condition (1.5)
on the best bid, it is never optimal to do intermediate sell orders when the overall goal
is the purchase of x > 0 shares. Before proving the corresponding Proposition 1.1.2,
we need Proposition 1.1.1 as a preparation. It deals with the optimization problem

inf
Θ∈A0(x)

E

[∫

[0,T ]

(
At +

△Θt

2qt

)
dΘt

]
(1.3)

that we get when we restrict (1.2) to buy strategies. Proposition 1.1.1 verifies that
the expected costs in (1.3) resulting from the unaffected best ask price and permanent
impact do not depend on the strategy. Therefore, we can, without loss of generality,
set Au ≡ 0, γ = 0. Consequently, only the expected temporary impact needs to be
minimized over all admissible buying strategies.
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Proposition 1.1.1. (Only temporary impact has to be considered).
For all Θ ∈ A0(x),

E

[∫

[0,T ]

(
At +

△Θt

2qt

)
dΘt

]
= A0x+

γ

2
x2 + E

[∫

[0,T ]

(
Dγ=0

t +
Kt

2
△Θt

)
dΘt

]

with Dγ=0
t := Dt − γΘt solving dD

γ=0
t = −ρtDγ=0

t dt+KtdΘt.

Proof. We start by looking at the expected costs caused by the unaffected best ask
price martingale. Using integration by parts for càglàd processes as well as the facts
that Θ ∈ A0(x) is bounded and that Au is an H1-martingale yields

E

[∫

[0,T ]

Au
t dΘt

]
= E

[
Au

T+ΘT+ − Au
0Θ0

]
= A0x. (1.4)

Let us now turn to the simplification of our optimization problem due to permanent
impact. To this end, we differentiate between the temporary price impact Dγ=0

t and
the total price impact Dt = Dγ=0

t + γΘt that we get by adding the permanent impact.
We can then write

∫

[0,T ]

(
Dt +

△Θt

2qt

)
dΘt

=

∫

[0,T ]

([
−
∫

[0,t)

ρsD
γ=0
s ds+

∫

[0,t)

(γ +Ks)dΘs

]
+

(γ +Kt)△Θt

2

)
dΘt

=
γ

2
x2 +

∫

[0,T ]

(
Dγ=0

t +
Kt

2
△Θt

)
dΘt,

since integration by parts for càglàd processes and Θ ∈ A0(x) yield

∫

[0,T ]

(
Θt +

△Θt

2

)
dΘt =

Θ2
T+ −Θ2

0

2
=
x2

2
.

Consider the expected costs of a round trip η ∈ R>0. That is we compare the revenue
of a sale η at time t with the cost of buying back η shares later at time s ≥ t. Due
to Ds ≥ γΘt and the martingale assumption we get

E

[
−
(
Bt −

η

2qt

)
η +

(
Au

s +Ds +
η

2qs

)
η

]
≥ E [(Au

t + γΘt −Bt) η] .

These expected costs of a round trip should be positive. This motivates to assume that
for all t ∈ [0, T ] and Θ, Θ̃ ∈ A0 the best bid price satisfies

Bt = Bt

(
Au

t ,Θ[0,t], Θ̃[0,t]

)
≤ Au

t + γ(Θt − Θ̃t). (1.5)
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Taking this reasonable bid price assumption, we can prove in Proposition 1.1.2 that
“not selling” is an optimal sell strategy in the original optimization problem (1.2). We
do so by showing that (1.2) is greater than or equal to (1.3) meaning that the two
terms must coincide.

Before we do so, let us economically justify (1.5). For a moment, ignore the temporary
impact. We can do this, since the temporary impact would even increase the difference
between the bid and the ask price. If we had to choose one fair price, it would be
canonical to take the martingale plus the net permanent impact, i.e. Au

t + γ(Θt − Θ̃t).
Actually, we have two prices instead of one and it seems natural to assume that the
ask price should be larger than Au

t + γ(Θt − Θ̃t), which is satisfied in our model, and
the bid price should be smaller as given in (1.5).

Proposition 1.1.2. (No trades in the opposite direction).
Under the bid price assumption (1.5), the terms (1.2) and (1.3) coincide.

Proof. Consider Θ, Θ̃ ∈ A0 with ΘT+ − Θ̃T+ = x. Without loss of generality we can
assume △Θt△Θ̃t = 0 for all t ∈ [0, T ]. Making use of (1.5) yields

E

[∫

[0,T ]

(
At +

△Θt

2qt

)
dΘt

]
− E

[∫

[0,T ]

(
Bt

(
Au

t ,Θ[0,t], Θ̃[0,t]

)
− △Θ̃t

2qt

)
dΘ̃t

]

≥ E

[∫

[0,T ]

(
Au

t + γΘt +Dγ=0
t +

γ

2
△Θt +

Kt

2
△Θt

)
dΘt

]

−E

[∫

[0,T ]

(
Au

t + γΘt − γΘ̃t −
γ

2
△Θ̃t −

Kt

2
△Θ̃t

)
dΘ̃t

]

≥ E

[∫

[0,T ]

Au
t d(Θt − Θ̃t)

]

+γE

[∫

[0,T ]

(
Θt +

△Θt

2

)
dΘt +

∫

[0,T ]

(
Θ̃t −Θt +

△Θ̃t

2

)
dΘ̃t

]

+E

[∫

[0,T ]

(
Dγ=0

t +
Kt

2
△Θt

)
dΘt

]
.

Analogously to (1.4), the first of these terms equals A0x since Θ, Θ̃ are monotonic and
bounded. For the second one we do integration by parts to deduce

∫

[0,T ]

(2Θt +△Θt) dΘt +

∫

[0,T ]

(
2Θ̃t +△Θ̃t

)
dΘ̃t − 2

∫

[0,T ]

ΘtdΘ̃t

= Θ2
T+ + Θ̃2

T+ − 2ΘT+Θ̃T+ + 2

∫

[0,T ]

Θ̃tdΘt ≥
(
ΘT+ − Θ̃T+

)2
= x2.

The assertion follows thanks to Proposition 1.1.1.

We want to point out that our approach with condition (1.5) is different from Alfonsi,
Schied, and Slynko (2009), Gatheral, Schied, and Slynko (2009) and Gatheral, Schied,
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and Slynko (2010) where it is assumed that there is no spread. Buying and selling
occurs at the same price. The output of the optimal execution problem is then used
as a sanity check for the input, i.e., the applied price impact model. In case of the
optimal strategy being non-monotonic, the impact model is rejected.

Our final optimization problem accounting for both the simplifications given in Propo-
sition 1.1.1 and 1.1.2 is summarized in the next section.

1.2 Summary of the singular control problem

Let us now summarize the control problem that we consider in the following. Due to
Proposition 1.1.1 and 1.1.2 we can without loss of generality set Au ≡ 0, γ = 0, Θ̃ ≡ 0
and define the cost function J : [0, T ]× [0,∞)×A0 × (0,∞) → [0,∞) as

J(Θ) := J(t, δ,Θ, κ) := Et,δ,κ

[∫

[t,T ]

(
Ds +

Ks

2
△Θs

)
dΘs

]
. (1.6)

We denote by Θs the number of shares hold by the large investor at time s ∈ [t, T ]
and the function J represents the total expected temporary impact costs on the time
interval [t, T ] when Dt = δ, Kt = κ. The process D stands for the price impact, i.e.,
the deviation of the current ask price from its steady state level and K is the price
impact coefficient satisfying Assumption Basic. The deviation Ds results from past
trades on [0, s) in the following way

dDs = −ρsDsds+KsdΘs, Dt = δ. (1.7)

That is for s ∈ [t, T ]

Ds =

∫ s

t

Kue
−

∫ s

u
ρrdrdΘu + δe−

∫ s

t
ρudu. (1.8)

The resilience speed ρ : [t, T ] → (0,∞) is assumed to be deterministic, strictly positive
and Lebesgue integrable. The process K describes the externally given dynamics of
the depth and D represents the movement of the order book block due to the trades
of the large investor and the resilience effect. Notice that although K is not influenced
by the investor’s strategy, the liquidity in the market does react to the strategy via the
resilience.

The trader can choose actions from the set of admissible strategies At(x) in (1.1) that
build up a position of x ∈ [0,∞) shares by time T almost surely. Let us now define our
value function for continuous trading time U : [0, T ]× [0,∞)2 × (0,∞) → [0,∞) as

U(t, δ, x, κ) := inf
Θ∈At(x)

J(t, δ,Θ, κ). (1.9)
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Remark 1.2.1. (Optimization over deterministic instead of adaptive strategy set).
Imagine that we would constrain our optimization set to deterministic strategies only.
That is we would not allow any reaction of our optimal strategy to the dynamic of the
order book height. This would correspond to a modified optimization problem (1.9)
with Et,δ,κ [Ks] instead of Ks as our illiquidity process, since D is linear in K. That is
we would be in a setting with deterministic K.

Assume that trading is only allowed at given discrete trading times

0 = t0 < t1 < ... < tN = T

and define ñ(t) := inf{n = 0, ..., N |tn ≥ t}. We then have to constrain our admissible
strategy set to

AN
t :=

{
Θ ∈ At| Θs = 0 on [t, tñ(t)] and

Θs = Θtn+ a.s. on (tn, tn+1) for n = ñ(t), ..., N − 1
}
⊂ At

and the value function for discrete trading time becomes

UN (t, δ, x, κ) := inf
Θ∈AN

t (x)
J(t, δ,Θ, κ) ≥ U(t, δ, x, κ) (1.10)

with AN
t (x) :=

{
Θ ∈ AN

t |ΘT+ = x a.s.
}
. Introducing the discrete trade at time t

as ξt := ∆Θt and slightly abusing notation ξn := ξtn, we can also write the cost integral
as a sum

UN(t, δ, x, κ) = inf
Θ∈AN

t (x)
Et,δ,κ

[
∑

tn≥t

(
Dtn +

Ktn

2
ξn

)
ξn

]
. (1.11)

Both value functions u = U and u = UN admit the boundary conditions

u(T, δ, x, κ) =
(
δ +

κ

2
x
)
x and u(t, δ, 0, κ) = 0. (1.12)

Convention: Instead of writing u and meaning that this result holds for both U
and UN , we only write U and still mean that the statement is also true for UN if not
stated otherwise. This procedure applies analogously to At and AN

t .

In the following, it turns out to be useful that the discrete time value function satisfies
the dynamic programming principle, i.e.,

UN (tn, δ, x, κ) = (1.13)

inf
ξ∈[0,x]

{(
δ +

κ

2
ξ
)
ξ + Etn,δ,κ

[
UN

(
tn+1, (δ + κξ)e−

∫ tn+1
tn

ρsds, x− ξ,Ktn+1

)]}

for n = 0, ..., N − 1. See, e.g., Bertsekas and Shreve (1978) for a justification of the
dynamic programming principle and especially measurability issues. Let us outline how
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one derives (1.13). We consider (1.11), notice that
(
Dtn + Ktn

2
ξn

)
ξn is Ftn measurable

and apply the tower property of the conditional expectation to get

UN(tn, δ, x, κ) =

inf
Θ∈AN

tn
(x)

{(
δ +

κ

2
ξn

)
ξn

+Etn,δ,κ

[
Etn+1,Dtn+1 ,Ktn+1

[
N∑

j=n+1

(
Dtj +

Ktj

2
ξj

)
ξj

]]}

= inf
ξn∈[0,x]

{(
δ +

κ

2
ξn

)
ξn

+Etn,δ,κ

[
inf

Θ∈AN
tn+1

(x−ξn)
Etn+1,Dtn+1 ,Ktn+1

[
N∑

j=n+1

(
Dtj +

Ktj

2
ξj

)
ξj

]]}
.

The last equation is essential. It holds due to the Markovian structure of our problem,
i.e., the conditional expectation given the information up to time tn+1 does not depend
on the past, but only on the values at time tn+1.

As preparation for following results, we state some easy to check comparative statics
satisfied by the value function. The value function is increasing in t, δ, x and the price
impact coefficient K as well as decreasing with respect to the resilience speed function.

Lemma 1.2.2. (Comparative statics for the value function).
Assume that an optimal strategy exists.

a) Then the value function U is increasing in t in the sense that
for all 0 ≤ t1 ≤ t2 ≤ T

U (t1, δ, x, κ) ≤ Et1,κ [U (t2, δ, x,Kt2)] .

b) Then the value function U is strictly increasing in δ, x.

c) Fix t ∈ [0, T ]. For κ > 0 denote by Kt,κ the process on [t, T ] that satisfies Kt,κ
t = κ.

Assume that 0 < Kt,κ1
s ≤ Kt,κ2

s a.s. for all s ∈ [t, T ]. Then

U(t, δ, x, κ1) ≤ U(t, δ, x, κ2).

d) Fix t ∈ [0, T ]. Assume that two resilience speed functions ρ̂, ρ̌ : [t, T ] → (0,∞) satis-
fying ρ̂s ≥ ρ̌s for all s ∈ [t, T ] are considered. Then the value function corresponding
to ρ̂ is less than or equal to the one corresponding to ρ̌.
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Proof.

a) Suppose for a contradiction that U fails to be increasing in t, i.e., there exist δ, x, κ,
0 ≤ t1 ≤ t2 ≤ T such that

U(t1, δ, x, κ) > Et1,κ [U (t2, δ, x,Kt2)] . (1.14)

Let Θt2 ∈ At2(x) denote an optimal strategy in the sense that

U (t2, δ, x,Kt2) = J
(
t2, δ,Θ

t2 , Kt2

)
. (1.15)

Define Θt1 ∈ At1(x) via

Θt1
s :=

{
0 for s ∈ [t1, t2]
Θt2

s for s ∈ (t2, T ]

}
.

The definition of the value function then yields

U(t1, δ, x, κ) ≤ J
(
t1, δ,Θ

t1 , κ
)
= Et1,κ

[
J
(
t2, δe

−
∫ t2
t1

ρsds,Θt2 , Kt2

)]
.

As we see in (1.8), for each s ∈ [t, T ] and fixed strategy Θ, the price impact Ds is
increasing in δ such that also J must be increasing in δ. Therefore

Et1,κ

[
J
(
t2, δe

−
∫ t2
t1

ρsds,Θt2 , Kt2

)]
≤ Et1,κ

[
J
(
t2, δ,Θ

t2 , Kt2

)]
.

Together with (1.14) and (1.15), this yields the desired contradiction.

b) Monotonicity in δ: Suppose for a contradiction that U fails to be increasing in δ,
i.e., there exist t, x, κ and 0 ≤ δ1 ≤ δ2 such that

U(t, δ1, x, κ) > U(t, δ2, x, κ). (1.16)

Let Θδ2 ∈ At(x) denote an optimal strategy in the sense that

U(t, δ2, x, κ) = J
(
t, δ2,Θ

δ2 , κ
)
. (1.17)

We have seen above that J is increasing in δ such that

U(t, δ1, x, κ) ≤ J
(
t, δ1,Θ

δ2, κ
)
≤ J

(
t, δ2,Θ

δ2, κ
)
.

Together with (1.16) and (1.17), this yields the desired contradiction.

Monotonicity in x: Suppose for a contradiction that U fails to be increasing in x,
i.e., there exist t, δ, κ, 0 ≤ x1 ≤ x2 such that

U(t, δ, x1, κ) > U(t, δ, x2, κ). (1.18)

Let Θx2 ∈ At(x2) denote an optimal strategy in the sense that

U(t, δ, x2, κ) = J(t, δ,Θx2 , κ). (1.19)
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Value function Notation Boundary conditions
U(t, δ, x, κ) U(T, δ, x, κ) =

(
δ + κ

2
x
)
x

U(t, δ, 0, κ) = 0
= δ2V (t, y, κ) y = x

δ
V (T, y, κ) = y + κ

2
y2

V (t, y, κ) = U(t, 1, y, κ) V (t, 0, κ) = 0

= δ2

κ
W (t, z) z = κx

δ
W (T, z) = z + 1

2
z2

W (t, z) = U(t, 1, z, 1) W (t, 0) = 0

Table 1.1: Summary of the dimension reduction.

The stopping time

τ := inf
{
s ∈ [t,∞)

∣∣Θx2
s ≥ x1

}

is less than or equal to T . Therefore we can define the strategy

Θx1
s :=

{
Θx2

s for s ∈ [t, τ ]
x1 for s ∈ (τ, T ]

}

with Θx1 ∈ At(x1). Due to the construction of τ and Θx1, we get

U(t, δ, x1, κ) ≤ J (t, δ,Θx1 , κ) = Et,δ,κ

[∫

[t,τ ]

(
Ds +

Ks

2
△Θx1

s

)
dΘx1

s

]

≤ J (t, δ,Θx2 , κ) .

Together with (1.18) and (1.19), this yields the desired contradiction.

Both properties c) and d) can be proved analogously to the monotonicity in δ.

1.3 Dimension reduction of the value function

In this section, we prove some scaling properties of the value function which can be
ascribed to the block-shape assumption. It is also essential that we assume exponential
resilience. That is our method would not work for more general dynamics of D as, e.g.,
in Predoiu, Shaikhet, and Shreve (2011). The scaling helps us to reduce the dimension
of our optimization problem as indicated in Table 1.1.

Lemma 1.3.1. (Optimal strategies scale linearly, Part I).
For all a ∈ [0,∞)

U(t, aδ, ax, κ) = a2U(t, δ, x, κ). (1.20)

Furthermore, if the strategy Θ∗ ∈ At(x) is optimal for U(t, δ, x, κ), then aΘ∗ ∈ At(ax)
is optimal for U(t, aδ, ax, κ).
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Proof. The assertion is clear for a = 0. For any a ∈ (0,∞) and Θ ∈ At, we get
from (1.6) and (1.8) that

J(t, aδ, aΘ, κ) = a2J(t, δ,Θ, κ). (1.21)

Let Θ∗ ∈ At(x) be optimal for U(t, δ, x, κ) and Θ̃ ∈ At(ax) be optimal for U(t, aδ, ax, κ).
If no such optimal strategies exist, the same arguments can be performed with mini-
mizing sequences of strategies. Using (1.21) and the optimality of Θ∗, Θ̃, we get

J(t, aδ, Θ̃, κ) ≤ J(t, aδ, aΘ∗, κ) = a2J(t, δ,Θ∗, κ)

≤ a2J

(
t, δ,

1

a
Θ̃, κ

)
= J(t, aδ, Θ̃, κ).

That is all inequalities are indeed equalities. Therefore aΘ∗ is optimal for U(t, aδ, ax, κ)
and (1.20) holds.

For δ > 0, we can take a = 1
δ
and apply Lemma 1.3.1 to get

U(t, δ, x, κ) = δ2U
(
t, 1,

x

δ
, κ
)
= δ2V (t, y, κ) (1.22)

for y := x
δ
and V (t, y, κ) := U(t, 1, y, κ). That is we are able to reduce our four-

dimensional value function (1.9) to a three-dimensional one. The knowledge of
U(t, δfix, x, κ) for some δfix > 0 or U(t, δ, xfix, κ) for some xfix > 0 already gives us
the entire value function. Instead of keeping track of the values x and δ separately,
only the ratio of them is important. But observe that this does not necessarily mean
that V can be interpreted as the value function of a modified optimization problem.

Remark 1.3.2. (Note on δ = 0).
For x = 0, the optimization is trivial. For x > 0, one could alternatively apply
Lemma 1.3.1 to ã = 1

x
such that

U(t, δ, x, κ) = x2U

(
t,
δ

x
, 1, κ

)
= x2Ṽ (t, ỹ, κ),

for ỹ := δ
x
and Ṽ (t, ỹ, κ) := U(t, ỹ, 1, κ). Anyway, we choose the first alternative

with a = 1
δ
, since the boundary condition V (t, 0, κ) ≡ 0 is more convenient. It is also

more intuitive to think in terms of y instead of ỹ. Only the case δ = 0 would have
to be discussed in terms of the second alternative with y = x

δ
= ∞ corresponding

to ỹ = δ
x
= 0. But this would simply be an adjustment of the arguments for the

case δ > 0 and it would be notationally awkward. Therefore we do not consider δ = 0
separately.

In some cases, even a reduction to two dimensions is possible.

Lemma 1.3.3. (Optimal strategies scale linearly, Part II).
Assume K to satisfy Assumption GBM. Then for all a ∈ (0,∞)

U

(
t, δ, ax,

1

a
κ

)
= aU(t, δ, x, κ).
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Furthermore, if the strategy Θ∗ ∈ At(x) is optimal for U(t, δ, x, κ), then aΘ∗ ∈ At(ax)
is optimal for U

(
t, δ, ax, 1

a
κ
)
.

Proof. For any a ∈ (0,∞) and Θ ∈ At, the deviation process (Ds)s∈[t,T ] from (1.8) is
identical for Θ and Kt = κ compared to aΘ and Kt =

1
a
κ. This is due to Assumption

GBM. Therefore we get from (1.6) that

J

(
t, δ, aΘ,

1

a
κ

)
= aJ (t, δ,Θ, κ) .

The assertion follows analogously as in the proof of Lemma 1.3.1.

Taking (1.22) and applying Lemma 1.3.3 with a = κ, we derive for δ > 0 that

U(t, δ, x, κ) =
δ2

κ
U
(
t, 1,

κx

δ
, 1
)
=
δ2

κ
W (t, z) (1.23)

for z := κx
δ

and W (t, z) := U(t, 1, z, 1). That is we are able to reduce our four-
dimensional value function (1.9) to a two-dimensional one in case of a linear stochastic
differential equation for K.

1.4 Hamilton-Jacobi-Bellman equation

For continuous trading time, we can derive the Hamilton-Jacobi-Bellman equation
(HJB) of the control problem (1.9) using heuristic arguments. To do so, let us as-
sume that U is two times continuously differentiable and that Assumption Diff holds.
In each situation (t, δ, x, κ), the large investor has two alternatives: He can either buy
the stock or do nothing in order to wait for a more favorable situation.

In the first case, he can trade ξ > 0 shares and

U(t, δ, x, κ) ≤ U(t, δ + κξ, x− ξ, κ) +
(
δ +

κ

2
ξ
)
ξ

= U(t, δ, x, κ) + ξ
(
κ∂δU(t, δ, x, κ)− ∂xU(t, δ, x, κ) + δ

)
+ o(ξ).

We used a Taylor expansion in the last equation and ∂δU , ∂xU are the partial derivatives
of U with respect to δ, x, e.g. ∂δU(t, δ, x, κ) :=

∂U
∂δ
(t, δ, x, κ). From this inequality we

can conclude that

BU(U) := κ∂δU − ∂xU + δ ≥ 0

and BU (U) = 0 if it is optimal to buy.
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Assume alternatively that the large investor is almost surely not trading on an inter-
val [t, s). By Ito’s formula

U(t, δ, x, κ) ≤ Et,δ,κ

[
U(s,Ds, x,Ks)

]
=

U(t, δ, x, κ) + Et,δ,κ

[∫ s

t

(
∂tU − ρuDu∂δU + µ∂κU +

1

2
σ2∂κκU

)
(u,Du, x,Ku) du

]
.

This implies

WU(U) := ∂tU − ρtδ∂δU + µ∂κU +
1

2
σ2∂κκU ≥ 0

and WU (U) = 0 if it is optimal to wait at t.

Altogether, we want to find U(t, δ, x, κ) satisfying boundary conditions (1.12) and the
following second order variational inequality :

min
{
BU(U),WU (U)

}
= 0. (1.24)

That is BU denotes the buy and WU the wait partial differential equation (PDE) that
are valid for the value function U .

Define

B(V ) := 1 + 2κV − (1 + κy)∂yV,

W(V ) := ∂tV − 2ρtV + ρty∂yV + µ∂κV +
1

2
σ2∂κκV,

and observe that BU(U) = δB(V ), WU (U) = δ2W(V ). That is one can translate (1.24)
into a variational inequality for V (t, y, κ)

min {B(V ),W(V )} = 0. (1.25)

Under Assumption GBM, i.e. the illiquidity process is linear, define

BW (W ) := 1 + 2W − (1 + z)∂zW,

WW (W ) := ∂tW − (2ρt + µ̄t − σ̄2
t )W + (ρt + µ̄t − σ̄2

t )z∂zW +
1

2
σ̄2
t z

2∂zzW,

and observe that BW (W ) = B(V ),WW (W ) = κW(V ). That is one can translate (1.25)
into a variational inequality for W (t, z)

min
{
BW (W ),WW (W )

}
= 0. (1.26)
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Chapter 2

Structural results on optimal
execution strategies

Let us give some heuristic arguments on the interpretation of the HJB variational
inequality (1.25). It indicates the existence of a buy and a wait region in our state space.
The structure of these sets is both conceptionally and mathematically interesting. For
fixed remaining trading time (T − t) and illiquidity κ, one would usually expect the
large investor to behave as follows: If there are many shares x left to be bought and
the price deviation δ is small, i.e. the ratio x

δ
is large, it is reasonable for the large

investor to trade. In the opposite situation, i.e. x
δ
is small, there is no incentive to

trade and he, e.g., better waits for a decrease of the price deviation due to resilience.
From this reasoning, one would guess that there exists a time- and illiquidity-dependent
barrier which divides the buy and the wait region with the buy (wait) region being the
values y = x

δ
above (below) this barrier function. Interestingly, it turns out that this

natural conjecture does indeed hold true usually, but not always as will be shown in
this chapter.

2.1 Introduction to buy and wait region

y

k

0

Barrier
c(t, )k

Buy

BR
t

WR
t

Figure 2.1: Schematic illustration of the buy and wait regions at fixed time t.

29
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We now want to formally introduce the concept of buy and wait region.

Definition 2.1.1. (Buy and wait region).
For given t ∈ [0, T ) and κ ∈ (0,∞), denote by

Brt(κ) :=
{
y ∈ (0,∞)

∣∣∣∃ξ ∈ (0, y) : U(t, 1, y, κ) = U (t, 1 + κξ, y − ξ, κ) +
(
1 +

κ

2
ξ
)
ξ
}

the inner buy region and call the closed sets

BRt(κ) := Brt(κ), WRt(κ) := R≥0 \Brt(κ)

the buy region and wait region.

For given t ∈ [0, T ), the buy and wait region can then be defined as subsets of R2

BRt :=
⋃

κ∈(0,∞)

{(y, κ)|y ∈ BRt(κ)}, WRt :=
⋃

κ∈(0,∞)

{(y, κ)|y ∈ WRt(κ)}.

In Lemma 2.1.2, we show by a simple argument that it is never optimal to buy all of the
remaining shares x before the end of the trading period: It is always better to retain
part of the total order to profit from the resilience. In later arguments, we use this fact
to conclude that 0 /∈ BRt(κ) for any t ∈ [0, T ), κ ∈ (0,∞). If there is not much time
left until T and there are only a few shares outstanding, then the large investor does
not buy the remainder at once, as would be reasonable from a practical point of view,
but spreads it over the remaining time. That is the optimal strategy does not have an
intrinsic time horizon.

Lemma 2.1.2. (Trading never completes ahead of time).
For all t ∈ [0, T ), δ ∈ [0,∞) and x, κ ∈ (0,∞), the value function satisfies

U(t, δ, x, κ) <
(
δ +

κ

2
x
)
x.

Proof. For ǫ ∈ [0, x], define the admissible strategies Θǫ ∈ At(x) that buy (x−ǫ) shares
at t and ǫ shares at T . The corresponding expected costs are

J (t, δ,Θǫ, κ) =
(
δ +

κ

2
(x− ǫ)

)
(x− ǫ) +

(
(δ + κ[x− ǫ]) e−

∫ T
t

ρsds +
Et,κ[KT ]

2
ǫ

)
ǫ.

Clearly,

U(t, δ, x, κ) ≤ J
(
t, δ,Θ0, κ

)
=
(
δ +

κ

2
x
)
x,

but we never have equality since

∂

∂ǫ
J (t, δ,Θǫ, κ)

∣∣∣
ǫ=0

= −
(
1− e−

∫ T
t

ρsds
)
(κx+ δ) < 0.
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The wait region- buy region conjecture can now be formalized as follows.

Definition 2.1.3. (WR-BR structure).
The value function has WR-BR structure if there exists a positive barrier function

c : [0, T )× (0,∞) → (0,∞]

such that for all t ∈ [0, T ), κ ∈ (0,∞)

Brt(κ) = (c(t, κ),∞)

with the convention (∞,∞) := ∅.

Thanks to Lemma 2.1.2, it is clear that the barrier c is strictly positive, if it exists.
Later on, we will see examples where the barrier attains infinity, i.e., Brt(κ) = ∅.
For c(t, κ) <∞, having WR-BR structure means that

BRt(κ) ∩WRt(κ) = {c(t, κ)}.

Since trading must be finished off at T , one can include the terminal time T with the
convention c(T, κ) ≡ 0. For the value function UN in discrete time to have WR-BR
structure, we only consider t ∈ {t0, ..., tN} and set cN(t, κ) = ∞ for t /∈ {t0, ..., tN}.

Suppose that we work under assumptions on K such that the value function has WR-
BR structure and we know the corresponding barrier function. Then the optimal
strategy is fully characterized. If the position of the large investor at time t satisfies x

δ
>

c(t, κ), it is optimal to do the smallest discrete trade ξ ∈ (0, x) such that the new ratio
of remaining shares over price deviation x−ξ

δ+κξ
is not in the interior of the buy region

anymore, i.e., the optimal trade then is

ξ∗ =
x− c(t, κ)δ

1 + κc(t, κ)

which is equivalent to

c(t, κ) =
x− ξ∗

δ + κξ∗
.

Notice that the ratio term x−ξ
δ+κξ

is strictly decreasing in ξ. Consequently, trades have
the effect of reducing the ratio as indicated in Figure 2.1, while the resilience effect
increases it. That is one trades just enough shares to keep the ratio y below the
barrier. Intuitively, this implies that apart from a possible initial and final impulse
trade, optimal buying occurs in infinitesimal amounts provided that c is continuous
in t and κ. For diffusive K, this leads to singular optimal controls. Although we do
not work explicitly with this interpretation, it is also possible to consider the described
issue as a Skorokhod problem with the process x−Θt

Dt
being constrained to the set WRt

with reflection at the barrier due to trading. All in all, it is desirable to prove WR-BR
structure of the value function and to compute the corresponding barrier function. Let
us have a look at the following proposition which formally states these ideas.
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Proposition 2.1.4. (WR-BR structure equivalent to trading towards the barrier).
Assume that for each (t, δ, x, κ) there exists a unique optimal strategy to problem (1.9)

(Θ∗
s(t, δ, x, κ))s∈[t,T ] ∈ At(x).

Then the following statements are equivalent.

(a) The value function has WR-BR structure.

(b) There exists c : [0, T )× (0,∞) → (0,∞] such that for all (t, δ, x, κ)

△Θ∗
t (t, δ, x, κ) = max

{
0,
x− c(t, κ)δ

1 + κc(t, κ)

}
. (2.1)

In particular, △Θ∗
t (t, δ, x, κ) is continuous in δ and x.

(c) For all (t, δ, κ), the function x 7→ △Θ∗
t (t, δ, x, κ) is increasing.

In the sequel and especially for the proof of Proposition 2.1.4, we use the following
simple observation.

Lemma 2.1.5. (Splitting argument).
Doing two separate trades ξα, ξβ > 0 at the same time t ∈ [0, T ] has the same effect as
trading at once ξ := ξα + ξβ, i.e., this incurs the same impact costs and impact Dt+.

Proof. The impact costs are in both cases

(
Dt +

Kt

2
ξ

)
ξ = Dt (ξα + ξβ) +

Kt

2

(
ξ2α + 2ξαξβ + ξ2β

)

=

(
Dt +

Kt

2
ξα

)
ξα +

(
Dt +Ktξα +

Kt

2
ξβ

)
ξβ

and the impact Dt+ = Dt +Kt (ξα + ξβ) after the trade is equal as well.

Proof of Proposition 2.1.4. Firstly, we prove the equivalence of (a) and (b). State-
ment (c) follows immediately from (b). We conclude by showing that (c) implies (b).
Recall the dimension reduction from Lemma 1.3.1 which yields

△Θ∗
t (t, δ, x, κ) = δ△Θ∗

t

(
t, 1,

x

δ
, κ
)
.

That is we only need to discuss the case δ = 1. Fix arbitrary t ∈ [0, T ], κ ∈ (0,∞).
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(a) ⇒ (b) The assertion holds for x = 0. Assume x ∈ (0, c(t, κ)]. Then WR-BR
structure implies that for all ξ ∈ (0, x)

U(t, 1, x, κ) < U (t, 1 + κξ, x− ξ, κ) +
(
1 +

κ

2
ξ
)
ξ.

Therefore it cannot be optimal to trade immediately at time t.

Assume c(t, κ) < ∞ and x ∈ (c(t, κ),∞). Then WR-BR structure implies that
there exists ξ̃ ∈ (0, x) such that

U(t, 1, x, κ) = U
(
t, 1 + κξ̃, x− ξ̃, κ

)
+
(
1 +

κ

2
ξ̃
)
ξ̃.

Due to the uniqueness of the optimal strategy, we get

△Θ∗
t (t, 1, x, κ) = ξ̃ +△Θ∗

t

(
t, 1 + κξ̃, x− ξ̃, κ

)
> 0.

For ξ̃ < x−c(t,κ)
1+κc(t,κ)

, we have x−ξ̃

1+κξ̃
> c(t, κ) and thus

△Θ∗
t

(
t, 1 + κξ̃, x− ξ̃, κ

)
> 0.

Consequently, △Θ∗
t (t, 1, x, κ) ≥ x−c(t,κ)

1+κc(t,κ)
and due to Lemma 2.1.5

△Θ∗
t (t, 1, x, κ) =

x− c(t, κ)

1 + κc(t, κ)
+△Θ∗

t

(
t, 1 + κ

x− c(t, κ)

1 + κc(t, κ)
, x− x− c(t, κ)

1 + κc(t, κ)
, κ

)
.

Observe that the second summand equals zero because

x− x−c(t,κ)
1+κc(t,κ)

1 + κ x−c(t,κ)
1+κc(t,κ)

= c(t, κ).

(b) ⇒ (a) Assume x ∈ (0, c(t, κ)]. Then (2.1) implies △Θ∗
t (t, 1, x, κ) = 0. Together

with the uniqueness of the optimal strategy we can therefore conclude that x /∈
Brt(κ), since for all ξ ∈ (0, x)

U(t, 1, x, κ) < U (t, 1 + κξ, x− ξ, κ) +
(
1 +

κ

2
ξ
)
ξ.

Assume c(t, κ) <∞ and x ∈ (c(t, κ),∞). Then (2.1) implies

△Θ∗
t (t, 1, x, κ) ∈ (0, x).

The optimality of Θ∗ leads to the conclusion x ∈ Brt(κ) since

U(t, 1, x, κ) = U (t, 1 + κ△Θ∗
t (t, 1, x, κ), x−△Θ∗

t (t, 1, x, κ), κ)

+
(
1 +

κ

2
△Θ∗

t (t, 1, x, κ)
)
△Θ∗

t (t, 1, x, κ).
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(c) ⇒ (b) Define

c(t, κ) := inf {x ∈ (0,∞)|△Θ∗
t (t, 1, x, κ) > 0} .

We are done for c(t, κ) = ∞. For c(t, κ) < ∞, the definition of c(t, κ) guar-
antees △Θ∗

t = 0 for all x < c(t, κ) and Property (c) implies △Θ∗
t > 0 for

all x > c(t, κ). Suppose for a contradiction that

△Θ∗
t (t, 1, c(t, κ), κ) > 0.

Due to the uniqueness and the splitting argument, we then have

ǫ ∈ [0,△Θ∗
t (t, 1, c(t, κ), κ)) with

△Θ∗
t (t, 1, c(t, κ), κ) = ǫ+△Θ∗

t (t, 1 + κǫ, c(t, κ)− ǫ, κ) = ǫ < △Θ∗
t (t, 1, c(t, κ), κ) .

Therefore △Θ∗
t = 0 for all x ≤ c(t, κ).

We still need to prove △Θ∗
t = x−c(t,κ)

1+κc(t,κ)
for x > c(t, κ). Assume △Θ∗

t >
x−c(t,κ)
1+κc(t,κ)

.
Once more, we make use of the uniqueness and the splitting argument in order
to get a contradiction

△Θ∗
t =

x− c(t, κ)

1 + κc(t, κ)
+△Θ∗

t

(
t, 1 + κ

x− c(t, κ)

1 + κc(t, κ)
, x− x− c(t, κ)

1 + κc(t, κ)
, κ

)

=
x− c(t, κ)

1 + κc(t, κ)
< △Θ∗

t .

Assume △Θ∗
t < x−c(t,κ)

1+κc(t,κ)
. That is

x−△Θ∗
t

1+κ△Θ∗
t
> c(t, κ) such that we also get a

contradiction

△Θ∗
t = △Θ∗

t +△Θ∗
t (t, 1 + κ△Θ∗

t , x−△Θ∗
t , κ) > △Θ∗

t .

In discrete trading time, one can also show that not only the initial trade of the
optimal strategy△Θ∗

tn(tn, δ, x, κ) has the form (2.1), but also all the consequent optimal
trades △Θ∗

tj
(tn, δ, x, κ) for j = n+ 1, .., N .

Proposition 2.1.6.
(Discrete time: WR-BR structure equivalent to trading towards the barrier).
Assume that for each (tn, δ, x, κ) there exists a unique optimal strategy to problem (1.10)

(Θ∗
s (tn, δ, x, κ))s∈[tn,T ] ∈ AN

tn(x).

Then the following statements are equivalent.

(a) The value function has WR-BR structure.
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(b) There exists cN : [0, T )× (0,∞) → (0,∞] such that for all (tn, δ, x, κ)
and j = n, ..., N

△Θ∗
tj
(tn, δ, x, κ) = max

{
0,
x−Θ∗

tj
(tn, δ, x, κ)− cN

(
tj , Ktj

)
D∗

tj
(tn, δ, x, κ)

1 +Ktjc
N
(
tj , Ktj

)
}
.

(2.2)

Proof. Recalling Proposition 2.1.4, it is clear that (b) implies (a). We show the reverse
direction by induction. For j − n = 0, equation (2.2) follows from Proposition 2.1.4.
Consider the induction step. For all n, we want to show (2.2) for j−n when it already
holds for j − n− 1. Applying the uniqueness of the optimal strategy and the dynamic
programming principle in the first and third equation and the induction hypothesis in
the second one, we get

△Θ∗
tj
(tn, δ, x, κ)

= △Θ∗
tj

[
tn+1,

(
δ + κ△Θ∗

tn (tn, δ, x, κ)
)
e−

∫ tn+1
tn

ρsds, x−△Θ∗
tn (tn, δ, x, κ) , Ktn+1

]

= max

{
0,
x−△Θ∗

tn (tn, δ, x, κ)−Θ∗
tj
[...]− cN

(
tj , Ktj

)
D∗

tj
[...]

1 +Ktjc
N
(
tj, Ktj

)
}

= max

{
0,
x−Θ∗

tj
(tn, δ, x, κ)− cN

(
tj , Ktj

)
D∗

tj
(tn, δ, x, κ)

1 +Ktjc
N
(
tj , Ktj

)
}
.

Here the term [...] stands for the content of the square brackets one line above.

We have seen in Proposition 2.1.4 and 2.1.6 that the idea of WR-BR structure is
closely related to optimal trading being increasing in the number of shares still to
be bought. Therefore, we conjectured at the beginning of this project that WR-BR
structure should hold under general assumptions on K. But it turns out that this is
not necessarily the case. It is indeed possible to construct examples, which we call
WR-BR-WR examples, where

y1 ∈ BRt(κ) and y2 ∈ WRt(κ) for y1 < y2.

This makes it even more important to have a closer look at the concept of WR-BR
structure. Thus, we discuss the presented control problem for different special cases of
the K dynamics. For each case, we want to answer the following questions:

• Under which conditions does WR-BR structure hold?

• If we have WR-BR structure, what properties does the barrier have?

• Can we compute the value function and the optimal strategy numerically?

• Is it possible to state an explicit WR-BR-WR example?

Table 2.1 gives an overview under which assumptions on K we are going to prove
WR-BR structure. It also lists the corresponding sections.
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WR-BR structure WR-BR-WR example
Discrete 2.2.1, Assumption Const
time 2.2.2, Assumption Determ 2.5.1, Binomial model

2.3, Assumption SpecialGBM 2.5.3, GBM
2.4.2, Assumption SpecialDiff
2.4.3, Assumption SpecialCIR 2.5.2, CIR

Continuous 2.2.1, Assumption Const 2.5.4, Binomial model
time 2.2.3, Assumption CtsDeterm

2.4.2, Assumption SpecialDiff
2.4.3, Assumption SpecialCIR

Table 2.1: Outlook of the following WR-BR structural results in discrete and continuous
trading time.

2.2 Deterministic price impact

Here, we go beyond the existing literature and consider deterministic K. The subse-
quent sections of this chapter contain the stochastic case. The purpose of a determin-
istic specification of the illiquidity process is the inclusion of seasonalities in the order
book dynamics. For example, the traded volume is often observed to be U-shaped
during one trading day, see e.g. Lorenz and Osterrieder (2009). Malo and Penna-
nen (2010) and Cont, Kukanov, and Stoikov (2010) empirically find that the averaged
intraday pattern of the order book depth is increasing. This would correspond to a
decreasing K. In view of Proposition 1.1.1, all optimal strategies will automatically be
deterministic in this section.
In Subsection 2.2.1, we state the closed-form solution of our optimization problem for
constant K. In Subsection 2.2.2, we start by proving that we always have WR-BR
structure in the deterministic case when trading is allowed in discrete time only. In
continuous time, we need the deterministic illiquidity process to be continuous in order
to guarantee the existence of optimal strategies, see Subsection 2.2.3. Apart from this
continuity of K, the WR-BR result carries over from discrete to continuous time with-
out any further assumptions. In some cases, we can use the Euler-Lagrange formalism
in Subsection 2.2.4 to compute closed-form optimal strategies for deterministic K.

2.2.1 Constant price impact

As a first example of our model, let us discuss the case where resilience and limit order
book stay constant over time, i.e., ∂

∂s
ρs ≡ 0 and K satisfies Assumption Const. This

corresponds to the model suggested by Obizhaeva and Wang (2006). They show in
particular that a unique optimal strategy exists which is increasing in the number of
shares still to be bought. This guarantees WR-BR structure via Proposition 2.1.4. As
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an illustration, we are going to calculate the barrier function and the full solution to the
variational inequality. The procedure will be as follows: We recall the optimal strategy
for δ = 0. From this strategy, we calculate the barrier function c(t, κ). With this barrier
function at hand, we can then compute optimal strategies for δ > 0. We double-check
that these strategies are indeed optimal by showing that the corresponding costs satisfy
the variational inequality. In particular, the whole procedure will explicitly point out
how one gets the optimal strategy for a given barrier and vice versa.

Proposition 2.2.1. (Constant liquidity, discrete time).
Under Assumption Const and for (N + 1) equidistant trading times tn = nτ , τ := T

N
,

the optimal strategy ΘN ∈ AN
0 (x) for δ = 0 is given by

ξN0 = ξNN =
x

(N − 1)(1− e−ρτ ) + 2
,

ξN1 = ... = ξNN−1 =
x− 2ξN0
N − 1

=
(1− e−ρτ )x

(N − 1)(1− e−ρτ ) + 2
.

For n = 1, ..., N , the deviation is DN
tn = κξN0 e

−ρτ and we get the barrier

cN(tn, κ) :=
x−ΘN

tn+

Dtn+
=
c̃N(tn)

κ
, c̃N(tn) := e−ρτ +

1− e−ρτ

τ
(T − tn).

The corresponding optimal costs are

UN(0, 0, x, κ) =
1

2

(
1 +N

1− e−ρτ

1 + e−ρτ

)−1

κx2.

In the more general case δ ≥ 0, n ∈ {0, ..., N} and κx
δ
≥ c̃N(tn), we get

UN (tn, δ, x, κ) =
1

2

(
1 + (N − n)

1− e−ρτ

1 + e−ρτ

)−1 [
κx2 + 2xδ − (N − n)

1− e−ρτ

1 + e−ρτ

δ2

κ

]
.

The optimal strategy ξN in this explicit form is given in Alfonsi, Fruth, and Schied
(2010) and DN , cN as well as UN (0, 0, x, κ) can be calculated directly from ξN . Having
calculated the barrier, it is also easy to compute the value function in more general
cases. The optimal strategy for δ = 0 does not depend on κ. It is linear in x and
therefore has constant relative trading speed.

Proposition 2.2.2. (Constant liquidity, continuous time).
Under Assumption Const, the optimal strategy Θ ∈ A0(x) for δ = 0 is given by

△Θ0 = △ΘT =
x

ρT + 2
, dΘt =

x− 2△Θ0

T
=

ρx

ρT + 2
. (2.3)

For t ∈ (0, T ], the deviation is Dt ≡ κ△Θ0 and we get the barrier

c(t, κ) :=
x−Θt+

Dt+
=
c̃(t)

κ
, c̃(t) := 1 + ρ(T − t).
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The corresponding optimal costs are

U(0, 0, x, κ) = (ρT + 2)−1 κx2.

In the more general case δ > 0, t ∈ [0, T ] and κx
δ
≥ c̃(t) we get

U(t, δ, x, κ) = (ρ(T − t) + 2)−1

[
κx2 + 2xδ − ρ

2
(T − t)

δ2

κ

]
.

This optimal strategy for δ = 0 in continuous time, i.e., Θ0 = 0,Θs = ρt+1
ρT+2

x for s ∈
[0, T ], is taken from Obizhaeva and Wang (2006). As already mentioned above, it is
linear in the number of shares. Notice also that c̃N is increasing in N with

lim
N→∞

c̃N(t) ր c̃(t).

The barrier c(t, κ) behaves like 1
κ
and is a decreasing straight line in the time dimension,

i.e., the shorter the time to maturity, the bigger is the buy region. Moreover, it is
characteristic that the large investor exactly purchases the shares that replenish the
order book due to the resilience effect. Thus the deviation process under the optimal
strategy is constant– the large investor always trades at this optimal price deviation.
Also observe that the value function has the form

α(t)κx2 + β(t)xδ + γ(t)
δ2

κ

and in particular is increasing and concave in κ due to γ being negative.

BR

WR2

WR1
0.0 0.2 0.4 0.6 0.8 1.0 t

1

2

3

4

z

Figure 2.2: Illustration of the buy and wait regions for constant κ and T = 1, ρ = 2.

Neither Obizhaeva and Wang (2006) nor Alfonsi, Fruth, and Schied (2010) consider
the case of strictly positive price deviations due to previous trades. But now that we
have calculated the barrier function, we can deduce the optimal strategy and the value
function for δ > 0. For x

δ
above the barrier c(t, κ) (buy region), the investor does a

discrete trade △Θt > 0 to reach the barrier, then trades at constant rate dΘs to stay
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on the barrier and finally buys the remaining shares at T . For x
δ
below the barrier

(wait region), he does not trade until

t̃(t, z) := inf
{
s > t|zep(s−t) = 1 + ρ(T − s)

}
, (2.4)

which is the time when the resilience has brought the position z up to the barrier.
Starting at t̃, the investor trades at constant rate to stay on the barrier and finishes
the order at T . But for low values of z, t̃ ≥ T which means that it is not profitable to
trade before T . Thus the whole order is unwound at T , i.e., △ΘT = x. See Figure 2.2
for an illustration of the different trading regions. This optimal strategy is explicitly
stated in Proposition 2.2.3. One calculates the corresponding costs as

WBR(t, z) =
z2 + 2z − 1

2
ρ(T − t)

c̃(t) + 1
,

WWR2(t, z) =
1

2
z2 + [1− ρ(T − t̃)]e−ρ(t̃−t)z +

ρ2

2
(T − t̃)2e−2ρ(t̃−t),

WWR1(t, z) =
1

2
z2 + e−ρ(T−t)z.

Proposition 2.2.3. (Constant liquidity, continuous time, supplement).
Under Assumption Const, we state the optimal strategy Θ ∈ At(x) for δ > 0:

• In the buy region, i.e., κx
δ

≥ c̃(t), the initial trade, the constant trading rate
for s ∈ (t, T ) and the final trade are

△Θt =
x− δ

κ
c̃(t)

c̃(t) + 1
, dΘs ≡ ρ

x+ δ
κ

c̃(t) + 1
ds, △ΘT =

x+ δ
κ

c̃(t) + 1
. (2.5)

• In the upper wait region, i.e., e−ρ(T−t) < κx
δ
< c̃(t), we only trade on [t̃, T ] with t̃

from (2.4) and

△Θt = 0, dΘs = ρ
δe−ρ(t̃−t)

κ
I{s∈[t̃,T ]}ds, △ΘT = x− ρ

(T − t̃)δe−ρ(t̃−t)

κ
.

• In the lower wait region, i.e., κx
δ
≤ e−ρ(T−t), it is optimal to trade the entire order

at T
△Θt = 0, dΘs ≡ 0, △ΘT = x.

The corresponding optimal costs are U(t, δ, x, κ) = δ2

κ
W (t, z) with

W (t, z) :=





WBR(t, z) if z ∈ [c̃(t),∞)
WWR2(t, z) if z ∈

(
e−ρ(T−t), c̃(t)

)

WWR1(t, z) if z ∈ [0, e−ρ(T−t)]



 .

The function W is a classical solution of the first order variational inequality (1.26)
for ρt ≡ ρ and µ̄t = σ̄t ≡ 0. It is C2 everywhere and C∞ for points (t, z) with z ∈
[0,∞) \

{
c̃(t), e−ρ(T−t)

}
.
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Proof. One can check the regularity directly and further calculations show

BW (WBR) = WW (WWR2) = WW (WWR1) = 0 and

WW (WBR),BW (WWR2),BW (WWR1) ≥ 0.

We go ahead by looking at more general deterministic profiles for K.

2.2.2 Discrete time wait and buy region structure

In this section, we work under Assumption Determ. Let us consider discrete trading
time and, slightly abusing notation, positive numbers Kn := Ktn for n = 0, ..., N .
Define Dn := Dtn and

UN (tn, δ, x) := UN (tn, δ, x,Kn) = inf
ξj∈[0,x]
∑

ξj=x

N∑

j=n

(
Dj +

Kj

2
ξj

)
ξj.

That is Dn = δ, Dj+1 = (Dj +Kjξj)aj with the resilience multipliers

aj := exp

(
−
∫ tj+1

tj

ρsds

)
. (2.6)

Recall the dimension reduction from Table 1.1

UN (tn, δ, x) = δ2V N
(
tn,

x

δ

)
with V N(tn, y) := UN (tn, 1, y).

We are now going to show by backward induction that the value function V N(tn, ·) is
continuously differentiable and piecewise quadratic with coefficients satisfying inequal-
ities (2.7) below. We can exploit these properties in order to prove WR-BR structure.

Proposition 2.2.4. (Deterministic, discrete time case: WR-BR structure).
Under Assumption Determ, the discrete time value function has WR-BR structure, a
unique optimal strategy exists and for n = 0, ..., N , V N (tn, ·) : [0,∞) → [0,∞) has the
following properties.

(i) It is continuously differentiable.

(ii) It is piecewise quadratic, i.e., there exists M ∈ N, constants (αi, βi, γi)i=1,...,M

and 0 < y1 < y2 < ... < yM = ∞ such that

V N (tn, y) = αm(y)y
2 + βm(y)y + γm(y)

for the index function m : [0,∞) → {1, ...,M} with m(y) := min{i|y ≤ yi}.
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(iii) The coefficients (αi, βi, γi)i=1,...,M from (ii) satisfy the inequalities

αi, βi > 0, (2.7)

4αiγi + βi − β2
i ≥ 0,

yi−1βi + 2γi ≥ 0.

The fact that the value function is piecewise quadratic comes about since we assume
the price impact D to be multiplied by the trade and the impact itself is linear in the
trade.

We prove the proposition by backward induction. To do so, the following lemmata
are essential in the induction step. They deal with the value function at times tn
and tn+1. We know that these functions are linked by the dynamic programming equa-
tion (1.13). In the proof of Lemma 2.2.5, we see that this connection between UN (tn, ·, ·)
and UN (tn+1, ·, ·) can be rewritten such that the minimization is not taken over the
trade ξ, but equivalently over the new ratio

η :=
y − ξ

1 +Knξ
.

This minimization over the new ratio in turn relates to the minimization of the auxiliary
function LN (tn, ·) defined via V N(tn+1, ·) in (2.10) below. In the sequel, it will be
essential in several arguments. Since LN(tn, ·) is strictly decreasing on [0, c∗) and
strictly increasing on (c∗,∞) according to Lemma 2.2.6 a), we find the unique optimal
strategy by choosing η = c∗ ∧ y. That is we trade to the barrier if y > c∗ and do not
trade otherwise. Applying Proposition 2.1.4 proves WR-BR structure.

Lemma 2.2.5. (Optimal trade and optimal barrier equation).
Under Assumption Determ, the discrete time value function satisfies

UN (tn, δ, x) = min
ξ∈[0,x]

{(
δ +

Kn

2
ξ

)
ξ + UN (tn+1, (δ +Knξ)an, x− ξ)

}
, (2.8)

UN (tn, δ, x) = min
η∈[0,x

δ
]

1

2Kn

[
(δ +Knx)

2LN (tn, η)− δ2
]
, (2.9)

LN(tn, y) :=
1 + 2Kna

2
nV

N(tn+1, ya
−1
n )

(1 +Kny)2
. (2.10)

Proof. Applying the dynamic programming principle from (1.13) yields

UN (tn, δ, x) = min
ξ∈[0,x]

{(
δ +

Kn

2
ξ

)
ξ + UN (tn+1, (δ +Knξ)an, x− ξ)

}

= min
ξ∈[0,x]

{(
δ +

Kn

2
ξ

)
ξ + (δ +Knξ)

2 a2nV
N

(
tn+1,

x− ξ

δ +Knξ
a−1
n

)}
.

Instead of focusing on the optimal trade, one can alternatively look for the optimal new
ratio of remaining shares over price deviation. To do so, we define the decreasing new
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ratio η(ξ) := x−ξ
δ+Knξ

that results from a trade ξ. If we are not trading, the ratio stays

the same, i.e., η(0) = x
δ
and if we trade everything at once, it gets zero, i.e., η(x) = 0.

Due to ξ(η) = x−ηδ
1+Knη

we can rewrite (2.8) as

UN (tn, δ, x) = min
η∈[0,x

δ
]

1

2Kn

[
(δ +Knx)

2LN (tn, η)− δ2
]
.

Lemma 2.2.6. Let b > 1, κ > 0 and v : [0,∞) → [0,∞) satisfy (i), (ii), (iii) given in
Proposition 2.2.4.
a) There exists c∗ ∈ [0,∞] such that

L(y) :=
1 + 2κb−2v(yb)

(1 + κy)2

is strictly decreasing for y < c∗ and strictly increasing for y > c∗.
b) The function

ṽ(y) :=

{
1
2κ

[(1 + κy)2L(c∗)− 1] if y > c∗

b−2v(yb) otherwise

}

again satisfies (i), (ii), (iii) with possibly different coefficients.

Proof of Proposition 2.2.4. Notice that V N(tN , y) =
(
1 + KN

2
y
)
y fulfills (i), (ii), (iii)

with M = 1, α1 = KN

2
, β1 = 1, γ1 = 0. Let us consider the induction step from tn+1

to tn. We are going to use Lemma 2.2.5 and 2.2.6 for b = a−1
n , κ = Kn, v = V N(tn+1, ·)

and L = LN (tn, ·). Take cn := c∗ from Lemma 2.2.6 a). Since the ratio η after the
trade cannot be larger than the ratio x

δ
before the trade, we get that

η∗ := argmin
η∈[0,x

δ
]

1

2Kn

[
(δ +Knx)

2LN (tn, η)− δ2
]
= min

{x
δ
, cn

}

and accordingly

ξ∗ := ξ (η∗) = max

{
0,

x− cnδ

1 +Kncn

}
.

That is we have a unique optimal strategy and WR-BR structure follows from Propo-
sition 2.1.4. The barrier cn has to be strictly positive due to Lemma 2.1.2. Plugging ξ∗

into (2.8) and doing the dimension reduction from Table 1.1 gives V N(tn, y) = ṽ(y).
Therefore Lemma 2.2.6 b) concludes the induction step.

Proof of Lemma 2.2.6. a) The function L is continuously differentiable with

L′(y) =
2κ

(1 + κy)3
l(y), (2.11)

l(y) := y
(
2αm(yb) − κβm(yb)b

−1
)
+
(
βm(yb)b

−1 − 2κγm(yb)b
−2 − 1

)
.
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First of all, we show that there is no interval where L is constant. Assume there would
be an interval where l is zero, i.e., there exists i ∈ {1, ...,M} such that (2αi−κβib−1) = 0
and (βib

−1 − 2κγib
−2 − 1) = 0. Solving these equations for α respectively γ yields

4αiγi + bβi − β2
i = 0.

This is a contradiction to (2.7).
Let us assume l(y̌) > 0 for some y̌ ∈ [0,∞) with j := m(y̌b). We are done if we can
conclude l(ŷ) > 0 for all ŷ ∈ [y̌,∞). Because of the continuity of l, it is sufficient to
show that L keeps increasing on [y̌, yj], i.e., we need to show l(ŷ) > 0 for all ŷ ∈ [y̌, yj].
Due to the form of l, this is guaranteed when 2αj − κβjb

−1 > 0. Let us suppose that
this term would be nonpositive which is equivalent to 2αjβ

−1
j b ≤ κ. Together with the

inequalities from (2.7) one gets

bl(y̌) = −κ b−1 (y̌bβj + 2γj) + (2y̌bαj + βj − b)

≤ −2αjβ
−1
j (y̌bβj + 2γj) + (2y̌bαj + βj − b)

= − 1

βj

(
4αjγj + βjb− β2

j

)
< 0.

This is a contradiction to l(y̌) > 0.

b) If c∗ is finite, the function ṽ is continuously differentiable in c∗ since a brief calculation
shows that ṽ′(c∗−) = ṽ′(c∗+) is equivalent to l(c∗) = 0.

ṽ(y) = α̃m̃(y)y
2 + β̃m̃(y)y + γ̃m̃(y)

Directly from its definition, one sees that ṽ is piecewise quadratic with M̃ = 1+m(c∗b),
ỹM̃−1 := c∗, ỹi := yib

−1 for i = 1, ..., M̃ − 2 and

α̃M̃ =
κ

2
L(c∗) > 0, β̃M̃ = L(c∗) > 0, γ̃M̃ =

L(c∗)− 1

2κ
, (2.12)

α̃i = αi > 0, β̃i = b−1βi > 0, γ̃i = b−2γi for i = 1, ..., M̃ − 1.

We therefore get

4α̃iγ̃i + β̃i − β̃2
i =

{
0 if i = M̃

b−2 (4αiγi + bβi − β2
i ) otherwise

}
≥ 0.

It remains to show that ṽ also inherits the last inequality in (2.7) from v. For y ≤ c∗,

yβ̃m̃(y) + 2γ̃m̃(y) = b−2
(
ybβm(yb) + 2γm(yb)

)
≥ 0.

Due to ṽ being continuously differentiable in c∗, we get

α̃M̃(c∗)2 + β̃M̃c
∗ + γ̃M̃ = α̃M̃−1(c

∗)2 + β̃M̃−1c
∗ + γ̃M̃−1,

2α̃M̃c
∗ + β̃M̃ = 2α̃M̃−1c

∗ + β̃M̃−1.
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Taking two times the first equation and subtracting c∗ times the second equation yields

c∗β̃M̃ + 2γ̃M̃ = c∗β̃M̃−1 + 2γ̃M̃−1.

Since we already know that the right hand side is positive, we finally get yβ̃M̃+2γ̃M̃ ≥ 0
for all y > c∗.

The proof of Proposition 2.2.4 not only establishes the existence of a unique barrier
(c(tn))n=0,...,N , but also directly states how to compute this barrier numerically. Let us
state the corresponding backward recursive algorithm.

Initialize value function V N(tN , y) =
(
1 + KN

2
y
)
y

For n = N − 1, ..., 0

Set LN (tn, y) :=
1+2Kna2nV

N(tn+1,ya
−1
n )

(1+Kny)
2

Compute c(tn) := cn := argmin
y≥0

LN (tn, y)

Set V N(tn, y) :=

{
1

2Kn

[
(1 +Kny)

2LN (tn, cn)− 1
]

if y > cn
a2nV

N(tn+1, ya
−1
n ) otherwise

}

2.2.3 Continuous time wait and buy region structure

Existence of an optimal strategy

Let us now show how the WR-BR result from Subsection 2.2.2 carries over to continu-
ous time. It is crucial to first discuss the existence of optimal strategies in continuous
time for deterministic K. We do so by working with Helly’s compactness theorem. Ex-
ample 2.2.7 and 2.2.8 motivate the fact that we will work under Assumption CtsDeterm
in this subsection.

Example 2.2.7. (Illiquidity as Dirichlet function: No optimal strategy exists).
Take T = 1, constant resilience speed and the following artificial example

K(t) =

{
1 for t rational
2 for t irrational

}
.

Let us show that the corresponding value function U(0, 0, x) is equal to UOW (0, 0, x, 1)
from Proposition 2.2.2 for constant K. Observe that U ≥ UOW due to Kt ≥ 1 for all t.
We get U ≤ UOW from the following argumentation. Let T N = {tN0 , ..., tNN} be an
equidistant partition of [0, T ], i.e., tNn = n

N
. Call ΘN the optimal strategy for constantK

and trading allowed on T N only. Then KtNn
= 1 for all N ∈ N, n ∈ {0, ..., N} such that

U(0, 0, x) ≤ lim
N→∞

J
(
0, 0,ΘN

)
= UOW (0, 0, x, 1).
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However, among all Θ ∈ A0(x) there is no strategy that attains UOW (0, 0, x, 1). Since
the set of rational numbers is countable, no measure without atoms will charge it with
positive mass. We can therefore write

J(0, 0,Θ) =

∫

[0,T ]

(
Dt +

Kt

2
△Θt

)
dΘt

=

∫

[0,T ]

(∫

[0,t]

Kse
−ρ(t−s)dΘs

)
dΘc

t +
∑

t∈[0,T ]

[
Dt +

Kt

2
△Θt

]
△Θt

=

∫

[0,T ]



2

∫

[0,t]

e−ρ(t−s)dΘc
s +

∑

s∈[0,t)
Ks△Θse

−ρ(t−s)



 dΘc
t

+
∑

t∈[0,T ]

[
Dt +

Kt

2
△Θt

]
△Θt

≥
∫

[0,T ]

(∫

[0,t]

e−ρ(t−s)dΘc
s

)
dΘc

t + JOW (0, 0,Θ, 1). (2.13)

If Θc
T > 0, the term J(0, 0,Θ) must be strictly larger than JOW (0, 0,Θ, 1). Suppose

for a contradiction that there exists an optimal strategy Θ∗ ∈ A0(x) such that

U(0, 0, x) = J (0, 0,Θ∗) ≥ JOW (0, 0,Θ∗, 1) ≥ UOW (0, 0, x, 1). (2.14)

We know from above that the left-hand and right-hand side coincide. Due to the
uniqueness of the optimal strategy ΘOW in the case of constant K, we get Θ∗ = ΘOW .
Therefore we deduce from (2.13) that

J (0, 0,Θ∗) > JOW (0, 0,Θ∗, 1) .

This is a contradiction to (2.14). Therefore there exists no strategy that attains the
value function.

Example 2.2.8. (Illiquidity with a jump: Costs are not continuous in the strategy).
Assume Kt = κ̌ and Ks = κ̂ for all s ∈ (t, T ] with 0 < κ̌ < κ̂. That is K has a jump
at initial time. The sequence of strategies

Θn
s :=

{
0 if s ≤ t + 1

n

x otherwise

}

converges weakly to Θ̃s := xI(t,T ](s), but we have no convergence of the costs, since

J(t, δ, Θ̃) =

(
δ +

κ̌

2
x

)
x 6= lim

n→∞
J(t, δ,Θn) =

(
δ +

κ̂

2
x

)
x.

Hence, this example illustrates that K being continuous is a sensible condition for the
assertion in Proposition 2.2.9.
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We will tackle the existence of an optimal strategy for deterministic, continuous K in
continuous time in Proposition 2.2.12 by use of the auxiliary result Proposition 2.2.9.
We can then prove in Theorem 2.2.15 that the value function has WR-BR structure.

Proposition 2.2.9. (Costs are continuous in the strategy, K continuous).
Under Assumption CtsDeterm, let Θ̃, (Θn) be deterministic strategies in At(x) with
Θn w→ Θ̃, i.e., limn→∞Θn

s = Θ̃s for every point s ∈ [t, T ] of continuity of Θ̃. Then

∣∣∣J(t, δ, Θ̃)− J(t, δ,Θn)
∣∣∣ n→∞−→ 0.

Notice that Θ̃T+ = Θn
T+ = x, so we do not need to assume convergence at T+. In

order to prove Proposition 2.2.9, we first show that the convergence of the price impact
processes follows from the weak convergence of the corresponding strategies. We then
conclude that a version of Proposition 2.2.9 for absolutely continuous K holds. This
finally leads to the desired version for continuous K.

Lemma 2.2.10. (Price impact process is continuous in the strategy).
Under Assumption CtsDeterm, let Θ̃, (Θn) be deterministic strategies in At(x) with
Θn w→ Θ̃. Then limn→∞Dn

s = D̃s for s = T+ and for every point s ∈ [t, T ] of
continuity of Θ̃.

Proof. Recall equation (1.8)

Ds =

∫ s

t

Kue
−

∫ s
u
ρrdrdΘu + δe−

∫ s
t
ρudu,

which holds for s = T+ and s ∈ [t, T ]. Due to the weak convergence and the integrand
being continuous in u, the assertion follows for s = T+. The weak convergence also
tells us that for all s ∈ [t, T ] with ∆Θ̃s = 0 and fs(u) := Kue

−
∫ s
u
ρrdrI[t,s)(u)

Dn
s =

∫ T+

t

fs(u)dΘ
n
u + δe−

∫ s
t
ρudu −−−→

n→∞
∫ T+

t

fs(u)dΘ̃u + δe−
∫ s

t
ρudu = D̃s.

Lemma 2.2.11. (Costs are continuous in the strategy, K absolutely continuous).
Under Assumption CtsDeterm, let K be absolutely continuous and Θ̃, (Θn) be deter-
ministic strategies in At(x) with Θn w→ Θ̃. Then

∣∣∣J(t, δ, Θ̃)− J(t, δ,Θn)
∣∣∣ n→∞−→ 0.
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Proof. We can write Ks = Kt +
∫ s

t
µudu. Let us show that

J(t, δ,Θ) =
1

2

[
D2

T+

KT
− δ2

Kt
+

∫

[t,T ]

(
2ρs
Ks

+
µs

K2
s

)
D2

sds

]
. (2.15)

The assertion then follows from Lemma 2.2.10. In order to get (2.15), we apply

dΘs =
dDs + ρsDsds

Ks
, ∆Θs =

∆Ds

Ks
.

This implies

J(t, δ,Θ) =

∫

[t,T ]

(
Ds +

Ks

2
△Θs

)
dΘs

=

∫

[t,T ]

Ds +
1
2
△Ds

Ks
dDs +

∫

[t,T ]

ρsD
2
s

Ks
ds+

∫

[t,T ]

1
2
△DsρsDs

Ks
ds.

In this expression, the last term is zero since D has only countably many jumps. Using

integration by parts for càglàd processes and d
(

Ds

Ks

)
= 1

Ks
dDs + Dsd

(
1
Ks

)
, we can

write

∫

[t,T ]

Ds

Ks
dDs =

1

2



D
2
T+

KT
− δ2

Kt
−
∫

[t,T ]

D2
sd

(
1

Ks

)
−
∑

s∈[t,T ]

(∆Ds)
2

Ks



 .

Plugging in d
(

1
Ks

)
= − µs

K2
s
ds yields (2.15).

Proof of Proposition 2.2.9. We use a proof by contradiction. Suppose there exists a
subsequence (nj) ⊂ N such that

lim
j→∞

∫

[t,T ]

(
Dnj

s +
Ks

2
△Θnj

s

)
dΘnj

s 6=
∫

[t,T ]

(
D̃s +

Ks

2
△Θ̃s

)
dΘ̃s

and the limit in this equation exists. Without loss of generality assume

lim
j→∞

∫

[t,T ]

(
Dnj

s +
Ks

2
△Θnj

s

)
dΘnj

s <

∫

[t,T ]

(
D̃s +

Ks

2
△Θ̃s

)
dΘ̃s. (2.16)

We now want to bring Lemma 2.2.11 into play. For ǫ > 0, we denote byKǫ an absolutely
continuous modification of K such that maxs∈[t,T ] |Kǫ

s −Ks| ≤ ǫ. For Θ ∈ At(x)

∣∣∣∣
∫

[t,T ]

(
Dǫ

s +
Kǫ

s

2
△Θs

)
dΘs −

∫

[t,T ]

(
Ds +

Ks

2
△Θs

)
dΘs

∣∣∣∣

≤
∫

[t,T ]

(
|Dǫ

s −Ds|+
1

2
|Kǫ

s −Ks|△Θs

)
dΘs ≤

3

2
x2ǫ.
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We therefore get from (2.16) that there exists ǫ > 0 such that

lim sup
j→∞

∫

[t,T ]

(
Dnj ,ǫ

s +
Kǫ

s

2
△Θnj

s

)
dΘnj

s <

∫

[t,T ]

(
D̃ǫ

s +
Kǫ

s

2
△Θ̃s

)
dΘ̃s.

This is a contradiction to Lemma 2.2.11.

Proposition 2.2.12. (Deterministic, continuous time case: Existence).
Under Assumption CtsDeterm, there exists an optimal strategy Θ∗ ∈ At(x), i.e.

J (t, δ,Θ∗) = inf
Θ∈At(x)

J (t, δ,Θ) .

Proof. Let (Θn) ⊂ At(x) be a deterministic, minimizing sequence. Due to the mono-
tonicity of the considered strategies, we can use Helly’s Theorem in the form of The-
orem 2, §2, Chapter III of Shiryaev (1995), which also holds for left-continuous pro-
cesses and on (0, T ] instead of (−∞,∞). It guarantees the existence of a determin-
istic Θ̃ ∈ At(x) and a subsequence (nj) ⊂ N such that (Θnj ) converges weakly to Θ̃.
Thanks to Proposition 2.2.9, we can conclude that

U(t, δ, x) = lim
j→∞

J(t, δ,Θnj ) = J(t, δ, Θ̃).

Remark 2.2.13. This existence proof does not work for stochastic K, since the subse-
quence (nj) would be scenario dependent.

Corollary 2.2.14. (Approximation by continuous strategies).
Define the restricted strategy set with impulse trades at initial and capital time only

Ac
t(x) := {Θ ∈ At(x)|Θ continuous on (t, T )} .

Under Assumption CtsDeterm,

inf
Θ∈At(x)

J(t, δ,Θ) = inf
Θ∈Ac

t (x)
J(t, δ,Θ).

Proof. Proposition 2.2.12 guarantees the existence of a deterministic optimal strat-
egy Θ∗ ∈ At(x) with countably many jump times t < s0 < s1 < ... < T with △Θ∗

sj
> 0.

For ǫ > 0, let Θǫ ∈ Ac
t(x) be an approximation of Θ∗: Set Θǫ

s := Θ∗
s, but on (s0, s0 + ǫ)

Θǫ
s := Θ∗

s0 +
Θ∗

s0+ǫ −Θ∗
s0

ǫ
(s− s0) .

Proceed analogously for the next jump time larger or equal to s0 + ǫ, and so on.
Then Θǫ w→ Θ∗ for ǫց 0. Hence, with Proposition 2.2.9

inf
Θ∈At(x)

J (t, δ,Θ) = J (t, δ,Θ∗) = lim
ǫց0

J(t, δ,Θǫ) ≥ inf
Θ∈Ac

t (x)
J(t, δ,Θ).
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WR-BR structure

For K being deterministic and continuous, we have now finalized the existence result.
Let us go ahead by showing that not only the value function in discrete, but also in
continuous time has WR-BR structure. Apart from the continuity of K, we do not
impose any assumptions. Hence, we can not work with the HJB equation and the
corresponding viscosity solutions. Instead, we are going to deduce the structural result
for our free boundary problem by transfering our discrete time result.

Theorem 2.2.15. (Deterministic, continuous time case: WR-BR structure).
Under Assumption CtsDeterm, the value function has WR-BR structure.

We now sketch the main idea of the proof. First, we show that the discrete time value
function converges to the continuous time value function. Second, we prove certain
convexity properties of the discrete time auxiliary function LN(0, ·). Finally, these
properties yield uniform convergence of LN(0, ·) in the number of trading instances
such that all nice properties from discrete time carry over to continuous time.

Without loss of generality, we set t = 0.

Lemma 2.2.16. (Discrete time converges to continuous time value function).
Consider an equidistant time grid with Nj := 2j trading instances. Under Assumption
CtsDeterm,

lim
j→∞

V Nj (0, y) = V (0, y).

Lemma 2.2.17. (No buy region within the wait region).
Recall that cN(0) denotes the barrier at t = 0, when we consider N+1 trading instances.
Under Assumption Determ, at least one of the following two statements is true:

• For all N ∈ N, the function y 7→ LN (0, y) given in (2.10) is convex on
[
0, cN(0)

)
.

• The continuous time buy region is simply Br0 = ∅, i.e. c(0) = ∞.

Lemma 2.2.18. (LN gets flat on the buy region).
Under Assumption CtsDeterm, consider an equidistant time grid with N + 1 entries
and assume c̄(0) := supN∈N c

N(0) <∞. Then for each y ∈ [c̄(0),∞)

lim
N→∞

[
LN(0, y)− LN

(
0, cN(0)

)]
= 0.

Proof of Theorem 2.2.15. As stated in Lemma 2.2.5 for discrete time, the continuous
time value function satisfies both the optimal trade and optimal barrier equation:

V (0, y) = min
ξ∈[0,y]

{(
1 +

K0

2
ξ

)
ξ + (1 +K0ξ)

2V

(
0,

y − ξ

1 +K0ξ

)}
,

V (0, y) = min
η∈[0,y]

1

2K0

[
(1 +K0y)

2L(0, η)− 1
]
, (2.17)

L(0, y) := L(y) :=
1 + 2K0V (0, y)

(1 +K0y)2
.
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The function L is positive with L(0) = 1. Define

c(0) := inf
{
y ≥ 0

∣∣∣∃ŷ ∈ (y,∞) : L(y) ≤ L(ŷ)
}
.

Then c(0) ∈ (0,∞] due to Lemma 2.1.2 and L is strictly decreasing on [0, c(0)). We
only need to show that for finite c(0), L is constant on [c(0),∞). One can then conclude

that for all y > c(0) and η ∈ (c(0), y), equivalently ξ := y−η
1+K0η

∈
(
0, y−c(0)

1+K0c(0)

)
, we have

V (0, y) =
1

2K0

[
(1 +K0y)

2L(0, η)− 1
]
=

(
1 +

K0

2
ξ

)
ξ + (1 +K0ξ)

2V

(
0,

y − ξ

1 +K0ξ

)
.

Moreover, for all y ≤ c(0) and η ∈ [0, y), equivalently ξ ∈ (0, y], V (0, y) is strictly
smaller than the right-hand side. That is Br0 = (c(0),∞) as desired.

Hence, it only remains to prove that for finite c(0), L is constant on [c(0),∞). To do
so, we show that the limit of LN(0, ·) has this property and that this limit coincides
with L. For Nj = 2j and the corresponding equidistant time grid, such a limit exists
at least pointwise since for each fixed y

j 7→ V Nj

(
T

Nj
, ye

∫

T
Nj
0 ρsds

)

is decreasing in j due to Lemma 1.2.2 and stays positive. We call the limit

L̃(y) := lim
j→∞

LNj (0, y)

and define c̃(0) analogously to c(0). That is L̃ must be strictly decreasing up to c̃(0).
Due to Lemma 2.2.17 and 2.2.18, L̃ must also be convex up to c̃(0), and for finite c̃(0),
it is constant on [c̃(0),∞) as desired. In particular, L̃ is non-increasing.

Let us show L = L̃ to complete the proof. According to Lemma 2.2.16 and 2.2.5,

V (0, y) = lim
j→∞

V Nj (0, y) = lim
j→∞

min
η∈[0,y]

1

2K0

[
(1 +K0y)

2LNj (0, η)− 1
]
. (2.18)

We would like to interchange the limit and the minimum such that

V (0, y) = min
η∈[0,y]

1

2K0

[
(1 +K0y)

2L̃(η)− 1
]
. (2.19)

In order to achieve this, we first do some preparations and then differentiate two cases.

Preparations: Define a modification of LNj (0, ·) by setting it constant on [cNj (0),∞)

ĽNj (0, y) :=

{
LNj (0, y) for y ≤ cNj(0)

LNj
(
0, cNj(0)

)
otherwise

}
.
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Our discrete time result guarantees that this modified function only takes values in [0, 1]
and due to Lemma 2.2.17, it can be assumed to be convex. Otherwise, the second point
in Lemma 2.2.17 would apply and we would be finished with the whole proof straight
away. Thanks to Lemma 2.2.18, ĽNj has the same limit as LNj for each fixed y, i.e.

lim
j→∞

ĽNj (0, y) = L̃(y).

Furthermore, the modified function attains the same minimum as LN(0, ·) itself, in the
sense that we can replace (2.18) by

V (0, y) =
1

2K0

[
(1 +K0y)

2

[
lim
j→∞

min
η∈[0,y]

ĽNj (0, η)

]
− 1

]
. (2.20)

Case 1: Assume lim supj→∞ cNj(0) > 0, i.e. there exists a subsequence (N̆j) of (Nj)

such that c̆(0) := limj→∞ cN̆j(0) ∈ (0,∞]. Then we claim that

lim
j→∞

min
η∈[0,y]

ĽNj (0, η) = lim
j→∞

min
η∈[ c̆(0)2

∧y,y]
ĽN̆j (0, η) = min

η∈[ c̆(0)2
∧y,y]

L̃(η) = min
η∈[0,y]

L̃(η). (2.21)

Indeed, Rockafellar (1997), Theorem II.10.8 guarantees uniform convergence of ĽN (0, ·)
on the closed bounded set [ c̆(0)

2
∧y, y] ⊂ (0,∞), since this pointwise converging sequence

consists of finite, convex functions on (0,∞). In the last equation of (2.21), we exploit

the fact that L̃ is non-increasing on [0, c̆(0)
2
]. With (2.20) and (2.21) we get (2.19).

Case 2: Assume lim supj→∞ cNj(0) = limj→∞ cNj (0) = 0, i.e. for each y ∈ (0,∞)

there exists j̃ ∈ N such that cNj(0) < y for all j ≥ j̃. Due to ĽNj (0, ·) being constant
on [cNj (0),∞) and L̃ being non-increasing, we conclude

lim
j→∞

min
η∈[0,y]

ĽNj (0, η) = L̃(y) = min
η∈[0,y]

L̃(η).

After convincing ourselves that (2.19) holds, we now want to exploit this fact to de-
duce L = L̃. We get L̃ ≥ L due to

lim
j→∞

V Nj

(
T

Nj

, ye
∫

T
Nj
0 ρsds

)
≥ lim

j→∞
V Nj (0, y) = V (0, y).

With (2.17) and (2.19), it follows that L̃ and L must be equal. In particular, c̃(0) =
c(0) > 0 such that Case 2 can be excluded a posteriori. We can now conclude that for
finite c(0) not only L̃, but also L is constant on [c(0),∞).

Proof of Lemma 2.2.16. Thanks to Proposition 2.2.12, there exists a continuous time
optimal strategy Θ∗ ∈ A0(y). Approximate it via step functions Θj ∈ ANj

0 (y). This
will be explained in more detail in Lemma 2.4.7 below. Then

V (0, y) = J(0, 1,Θ∗) = lim
j→∞

J(0, 1,Θj) ≥ lim
j→∞

V Nj (0, y).

The inequality V (0, y) ≤ limj→∞ V Nj (0, y) is immediate.
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Proof of Lemma 2.2.17. Fix N ∈ N. Recall that the definition of LN (0, ·) from (2.10)
contains V N(t1, ·) which is continuously differentiable and piecewise quadratic with
coefficients (αi, βi, γi). Analogously to (2.11), it turns out that

∂

∂y
LN (0, y) =

2K0

(1 +K0y)3

[
y

(
2α

m

(

ye
∫ t1
0 ρsds

) −K0β
m

(

ye
∫ t1
0 ρsds

)e−
∫ t1
0 ρsds

)

+

(
β
m

(

ye
∫ t1
0

ρsds

)e−
∫ t1
0 ρsds + 2K0γ

m

(

ye
∫ t1
0

ρsds

)e−2
∫ t1
0 ρsds − 1

)]
.

We differentiate two cases. First assume that all i satisfy (2αi − K0βie
−

∫ t1
0 ρsds) ≥ 0.

Then ∂
∂y
LN (0, ·) must be increasing on [0, cN(0)) as desired, since LN (0, ·) is decreasing

on this interval as we know from the discrete time result Lemma 2.2.6.

Assume to the contrary that there exists i such that (2αi −K0βie
−

∫ t1
0 ρsds) < 0. Recall

how αi and βi are actually computed in the backward induction of Proposition 2.2.4.
In each induction step, Lemma 2.2.6 is used and the coefficients α̃M̃ , β̃M̃ get updated
in (2.12). It gets clear that there exists n ∈ {1, ..., N} such that

2αi −K0βie
−
∫ t1
0 ρsds =

(
Ktn −K0e

−
∫ tn
0 ρsds

)
LN
(
tn, c

N(tn)
)
.

We get the resilience multiplier e−
∫ tn
0

ρsds thanks to the adjustment β̃i = a−1βi from
the second line of (2.12). Due to LN being positive, it follows that

Ktn < K0e
−

∫ tn
0

ρsds.

That is for this deterministic choice ofK, it cannot be optimal to trade at t = 0. Hence,
the buy region at t = 0 is the empty set for both discrete and continuous time.

Proof of Lemma 2.2.18. Due to cN(0) being the minimum of LN(0, ·), we know that

0 ≤ lim inf
N→∞

[
LN (0, y)− LN

(
0, cN(0)

)]
≤ lim sup

N→∞

[
LN (0, y)− LN

(
0, cN(0)

)]
.

That is we only need to show that the upper limit is less or equal to zero. Suppose for
a contradiction that there exists y ∈ [c̄(0),∞) , ǫ > 0 such that for all Ñ ∈ N there is
an N ≥ Ñ with

LN (0, y)− LN
(
0, cN(0)

)
≥ ǫ.

Then for t1 =
T
N

V N(0, y) =
1

2K0

[
(1 +K0y)

2 LN
(
0, cN(0)

)
− 1
]

≤ 1

2K0

[
(1 +K0y)

2 {LN (0, y)− ǫ
}
− 1
]

= V N
(
t1, ye

∫ t1
0 ρsds

)
e−2

∫ t1
0 ρsds − ǫ

(1 +K0y)
2

2K0
.
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In the last equation, we plugged in the definition of LN (0, y) from (2.10). We can anal-
ogously do these calculations for the optimal trade instead of optimal barrier equation

V N(0, y) =

(
1 +

K0

2

y − cN(0)

1 +K0cN(0)

)
y − cN(0)

1 +K0cN(0)
(2.22)

+

(
1 +K0

y − cN (0)

1 +K0cN(0)

)2

V N
(
t1, c

N(0)e
∫ t1
0 ρsds

)
e−2

∫ t1
0 ρsds

≤ V N
(
t1, ye

∫ t1
0 ρsds

)
e−2

∫ t1
0 ρsds − ǫ

(1 +K0y)
2

2K0

≤
(
1 +

Kt1

2

y − cN(0)

e−
∫ t1
0 ρsds +Kt1c

N(0)

)
y − cN(0)

e−
∫ t1
0 ρsds +Kt1c

N (0)
e−2

∫ t1
0 ρsds

+

(
1 +Kt1

y − cN (0)

e−
∫ t1
0 ρsds +Kt1c

N(0)

)2

V N
(
t1, c

N(0)e
∫ t1
0 ρsds

)
e−2

∫ t1
0 ρsds

−ǫ(1 +K0y)
2

2K0

.

We now explain the auxiliary calculation that is involved in the last inequality. The

aim is to estimate V N
(
t1, ye

∫ t1
0 ρsds

)
in terms of V N

(
t1, c

N(0)e
∫ t1
0 ρsds

)
. Since it is

suboptimal to do a trade

ξ̃ :=
y − cN(0)

e−
∫ t1
0 ρsds +Kt1c

N(0)
> 0,

we get

V N
(
t1, ye

∫ t1
0 ρsds

)
≤

(
1 +

Kt1

2
ξ̃

)
ξ̃ +

(
1 +Kt1 ξ̃

)2
V N

(
t1,

ye
∫ t1
0 ρsds − ξ̃

1 +Kt1 ξ̃

)
.

This is exactly what we used in the last inequality of (2.22) since

ye
∫ t1
0 ρsds − ξ̃

1 +Kt1 ξ̃
= cN(0)e

∫ t1
0 ρsds.

Rearranging (2.22) yields

0 ≤ aN + bNV
N
(
t1, c

N(0)e
∫ t1
0 ρsds

)
e−2

∫ t1
0 ρsds − ǫ

(1 +K0y)
2

2K0
(2.23)

with

aN :=

(
1 +

Kt1

2

y − cN (0)

e−
∫ t1
0 ρsds +Kt1c

N(0)

)
y − cN(0)

e−
∫ t1
0 ρsds +Kt1c

N(0)
e−2

∫ t1
0 ρsds

−
(
1 +

K0

2

y − cN (0)

1 +K0cN(0)

)
y − cN (0)

1 +K0cN(0)
,

bN :=

(
1 +Kt1

y − cN(0)

e−
∫ t1
0 ρsds +Kt1c

N(0)

)2

−
(
1 +K0

y − cN (0)

1 +K0cN(0)

)2

.
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Because of the continuity of K, |aN | and |bN | become arbitrarily small the higher we
choose Ñ . Moreover, it is suboptimal to trade the entire order at once and cN(0) ≤ c̄(0)
such that

0 ≤ V N
(
t1, c

N(0)e
∫ t1
0 ρsds

)
≤
(
1 +

Kt1

2
c̄(0)

)
c̄(0)e2

∫ t1
0 ρsds N→∞−→

(
1 +

K0

2
c̄(0)

)
c̄(0).

Therefore inequality (2.23) leads to the desired contradiction.

Remark 2.2.19. (Limit of the barrier in the number of trading instances).
It is intuitively clear that trading gets less urgent the more trading instances are avail-
able. Therefore j 7→ cNj (0) should be increasing. But when one looks at the discrete
time induction, it turns out that the proof of this monotonicity is not at all obvious. It
would in particular guarantee the existence of the limit ĉ(0) := limj→∞ cNj(0) ∈ (0,∞].
However, we could only say that c(0) < ĉ(0). That is we have so far not excluded that
the functions LN (0, ·) could get arbitrarily flat on (c(0), ĉ(0)) for large N .

Consider N = 2 and 3 as well as (Ks)s∈[0,1] with

K0 = K 1
2
= K1 << K 1

3
= K 2

3
.

Then the barrier must not be increasing in N . Therefore, it is reasonable to look at
the subsequence Nj = 2j such that the sets of trading instances satisfy

{
n
T

Nj

∣∣∣n = 0, ..., Nj

}
⊂
{
n

T

Nj+1

∣∣∣n = 0, ..., Nj+1

}
.

2.2.4 Closed form wait and buy region

We have seen in the previous section, that for deterministic, continuous dynamics
of K, an optimal strategy in continuous time exists and the value function has WR-BR
structure. Let us now calculate optimal strategies and their corresponding barriers
explicitly. Similar to Bank and Becherer (2009) and as explained in Gregory and Lin
(1996), we use the Euler-Lagrange formalism, at least to find a candidate optimal
strategy heuristically. Therefore, it is sensible to work under Assumption Smooth. The
verification of optimality is then done by direct calculation. Let us state the main
result of this subsection. Without loss of generality, we set t = 0.

Theorem 2.2.20. (Euler-Lagrange optimal barrier).
Suppose that Assumption Smooth holds and put

t̃ := inf {t ∈ [0, T ]|K ′
t + ρtKt ≥ 0} , ft :=

K ′
t + ρtKt

K ′
t + 2ρtKt

.

Furthermore, assume that f ′
t + ρtft ≥ 0 on [t̃, T ]. Then

c(t) =

{
∞ if t ∈ [0, t̃]

1
ft

(∫ T

t
f ′
s+ρsfs
Ks

ds+ 1−fT
KT

)
otherwise

}
.

In particular, the optimal strategy Θ ∈ A0(x) for δ = 0 satisfies x−Θt

Dt
= c(t) on (0, T ].
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Remark 2.2.21. The assumption f ′
t + ρtft ≥ 0 on [t̃, T ] is technical and does not have

an economic interpretaion. It is, e.g., satisfied in case of constant resilience and convex,
increasing K.

Theorem 2.2.20, containing the optimal barrier c, will be a direct consequence of the
following proposition, where we state the optimal strategy Θ.

Proposition 2.2.22. (Euler-Lagrange optimal strategy).
Under the assumptions of Theorem 2.2.20 and

δ∗ :=
x+ δe−

∫ t̃
0 ρtdt

Kt̃∫ T

t̃

f ′
t+ρtft
Kt

dt+
ft̃
Kt̃

+ 1−fT
KT

,

we get for δe−
∫ t̃
0 ρtdt ≤ δ∗ft̃ that

U(0, δ, x) = (δ∗)2
(∫ T

t̃

ft
f ′
t + ρtft
Kt

dt+
f 2
t̃

2Kt̃

+
1− f 2

T

2KT

)
−

(
δe−

∫ t̃

0
ρtdt
)2

2Kt̃

.

The corresponding unique optimal strategy Θ ∈ A0(x) can be expressed as

Θt =
1

Kt̃

(
δ∗ft̃ − δe−

∫ t̃

0
ρsds
)
I(t̃,∞)(t) + δ∗

∫ t

t̃∧t

1

Ks
(f ′

s + ρsfs) ds. (2.24)

The given optimal strategy is constant on [0, t̃] and afterwards

△Θt̃ = δ∗
ft̃
Kt̃

− δe−
∫ t̃

0
ρtdt

Kt̃

,

dΘt = δ∗
f ′
t + ρtft
Kt

dt,

△ΘT = δ∗
1− fT
KT

.

For δ = 0, the strategy is linear in the total position x. The proof of Proposition 2.2.22
consists of several lemmata. The first one justifies that we can without loss of generality
set t̃ = 0 in the remaining proof of Proposition 2.2.22.

Lemma 2.2.23. (Wait if decrease of K outweighs resilience).
If Assumption Smooth holds and K ′

t + ρtKt < 0 for some t ∈ [0, T ), then Brt = ∅.

Proof. The following calculation shows Kt+ǫ < Kte
−ρtǫ for small ǫ > 0:

K ′
t = lim

ǫց0

Kt+ǫ −Kt

ǫ
< −ρtKt = lim

ǫց0

Kte
−ρtǫ −Kt

ǫ
.

Therefore one gets lower costs and lower Dt+ǫ by postponing the trade to time t + ǫ,
i.e., it cannot be optimal to trade at t.
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In the remaining proof of the proposition, we are going to exploit the fact that there is
a one-to-one correspondence between Θ and D. The idea is to rewrite the cost term,
which is essentially

∫ T

0
DtdΘt, in terms of the deviation process D by applying

dΘt =
dDt + ρtDtdt

Kt
. (2.25)

We can then use the Euler-Lagrange equation to find necessary conditions on the
optimal D. Under our assumptions, these conditions turn out to be sufficient and
the optimal D directly gives us an optimal Θ. Motivated by Corollary 2.2.14, we
concentrate on the set of strategies Ac

0(x) ⊂ A0(x) with impulse trades at t = 0
and t = T only.

Nevertheless, it is not clear how to account for the constraint of increasing strategies in
the Euler-Lagrange equation. Therefore, we temporarily allow both buy and artificial
sell trades in Lemma 2.2.24. This gives rise to the definition

Ac
0,l(x) :=

{
Θ : [0, T+] → R with bounded variation,

continuous on (0, T ], Θ0 = 0, ΘT+ = x
}
⊃ Ac

0(x).

As we will see in Lemma 2.2.25, the assumptions of Proposition 2.2.22 guarantee that
this procedure returns an optimal strategy consisting only of buy trades. After stating
Lemma 2.2.24 and 2.2.25, the proof of Proposition 2.2.22 will be straightforward.

Lemma 2.2.24. (Optimal possibly non-monotonic strategy).
If Assumption Smooth holds and K ′

t + 2ρtKt > 0 on [0, T ], then

△Θ0 = δ∗
f0
K0

− δ

K0

, dΘt = δ∗
f ′
t + ρtft
Kt

dt, △ΘT = δ∗
1− fT
KT

is the unique optimal strategy to the auxiliary problem

inf
Θ∈Ac

0,l
(x)
J(0, δ,Θ).

Proof. According to (2.25), the deviation process given by D0 = δ, Dt = δ∗ft on (0, T ]
and DT+ = δ∗ belongs to the conjectured optimal strategy Θ from (2.24). In terms
of D, the corresponding trading costs are

J(0, δ,Θ) =

∫

(0,T )

DtdΘt +

(
δ +

K0

2
△Θ0

)
△Θ0 +

(
DT +

KT

2
△ΘT

)
△ΘT

=

∫

(0,T )

Dt

Kt
dDt +

∫

(0,T )

ρtD
2
t

Kt
dt+

D2
0+ −D2

0

2K0
+
D2

T+ −D2
T

2KT
.

Let us now look at alternative strategies Θ̂ ∈ Ac
0,l(x) with corresponding D̂ = D + h

and show that these alternative strategies cause higher trading costs than Θ. That is in
the following, we work with functions h : [0, T+] → R which are of bounded variation
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and continuous on (0, T ] with h0 = 0 and possible jumps (h0+ − h0), (hT+ − hT ) ∈ R.
Using

△Θ̂0 = △Θ0 +
h0+
K0

, dΘ̂t = dΘt +
dht + ρthtdt

Kt

, △Θ̂T = △ΘT +
hT+ − hT

KT

,

a straightforward calculation yields

J(0, δ, Θ̂) =

∫

(0,T )

D̂tdΘ̂t +

(
δ +

K0

2
△Θ̂0

)
△Θ̂0 +

(
D̂T +

KT

2
△Θ̂T

)
△Θ̂T

= J(0, δ,Θ) +△J1 +△J2,

△J1 :=

∫

(0,T )

2ρtDtht
Kt

dt+

∫

(0,T )

ht
Kt
dDt +

∫

(0,T )

Dt

Kt
dht

+
D0+h0+
K0

+
DT+hT+ −DThT

KT

,

△J2 :=

∫

(0,T )

ρth
2
t

Kt
dt+

∫

(0,T )

ht
Kt
dht +

h20+
2K0

+
h2T+ − h2T

2KT
.

Notice that we collect all terms containing D in △J1. We are now going to finish the
proof by showing that △J1 = 0 and △J2 > 0 if h does not vanish.

Let us first rewrite △J1 exploiting the fact that Dt = δ∗ft, use integration by parts,
the definition of f and again integration by parts to get

△J1
= δ∗

{∫

(0,T )

2ρtftht
Kt

dt+

∫

(0,T )

ht
Kt
dft +

∫

(0,T )

ft
Kt
dht +

f0h0+
K0

+
hT+ − fThT

KT

}

= δ∗
{∫

(0,T )

2ρtKt +K ′
t

K2
t

fthtdt+
hT+

KT

}

= δ∗
{∫

(0,T )

ρtht
Kt

dt+
hT+

KT
+

∫

(0,T )

K ′
t

K2
t

htdt

}

= δ∗
{∫

(0,T )

ρtht
Kt

dt+

∫

(0,T )

1

Kt

dht +
h0+
K0

+
hT+ − hT

KT

}
.

On the other hand, we have

x =

∫

(0,T )

dΘ̂t +△Θ̂0 +△Θ̂T

=

(∫

(0,T )

dΘt +△Θ0 +△ΘT

)

+

(∫

(0,T )

ρtht
Kt

dt+

∫

(0,T )

1

Kt

dht +
h0+
K0

+
hT+ − hT

KT

)

= x+
△J1
δ∗

.



58 Structural results on optimal execution strategies

That is △J1 = 0. Hence, J(Θ̂) − J(Θ) = △J2. Applying integration by parts on
the dht integral yields

△J2 =
∫

(0,T )

h2t
2Kt

(
2ρt +

K ′
t

Kt

)
dt+

h2T+

2KT
.

Due to our assumption 2ρt +
K ′

t

Kt
> 0 on [0, T ], △J2 is positive as desired.

Lemma 2.2.25. (Exclude artificial selling).
If Assumption Smooth holds, t̃ = 0 and f ′

t + ρtft ≥ 0 on [0, T ], then K ′
t + ρtKt ≥ 0

and ft ∈ [0, 1) on this interval.

Proof. The function t 7→ K ′
t+ρtKt is differentiable and non-negative at t = 0. Assume

it hits zero at š ∈ [0, T ) and suppose for a contradiction that there exists ŝ ∈ (š, T ) such
that K ′

ŝ + ρŝKŝ < 0. If necessary, modify ŝ such that K ′
ŝ + 2ρŝKŝ > 0. Then fš = 0

and fŝ < 0. Therefore, there exists s̃ ∈ (š, ŝ] such that fs̃ < 0 and f ′
s̃ < 0. That

is f ′
s̃ + ρs̃fs̃ < 0, which is a contradiction.

Thanks to Lemma 2.2.25, we know that the strategy (2.24) does not contain any
negative trades. It also shows that Proposition 2.2.22 only deals with dynamics of K
that result in a continuous function f , since K ′

t + 2ρtKt > 0. In particular, the cost
function J is strictly convex in the strategy as we see from (2.15), i.e. uniqueness is
guaranteed.

Proof of Proposition 2.2.22. Thanks to Lemma 2.2.23, we can without loss of general-
ity set t̃ = 0. We have A0(x) ⊃ Ac

0(x) ⊂ Ac
0,l(x) and Corollary 2.2.14 guarantees

inf
Θ∈A0(x)

J (0, δ,Θ) = inf
Θ∈Ac

0(x)
J (0, δ,Θ) ≥ inf

Θ∈Ac
0,l

(x)
J (0, δ,Θ) .

Due to Lemma 2.2.24, which we can apply thanks to Lemma 2.2.25, we know that (2.24)
is the unique optimal strategy within the set Ac

0,l(x). Lemma 2.2.25 assures also

that (2.24) does not contain any negative trades, i.e. belongs to Ac
0(x). Therefore, it

must also be the unique optimal stratey within this smaller strategy set and is also
optimal within A0(x).

Proof of Theorem 2.2.20. For deterministic, continuousK, we proved in Theorem 2.2.15
that the value function has WR-BR structure. Therefore the unique optimal strategy
from Proposition 2.2.22 can be used to calculate the corresponding barrier. Imagine
that t̃ = 0 and we want to trade x shares on [0, T ] with D0 = 0. From (2.24), we then
get

c(0) =
x−△Θ0

K0△Θ0

=
x

δ∗f0
− 1

K0

=
1

f0

(∫ T

0

f ′
s + ρsfs
Ks

ds+
1− fT
KT

)
.

Without loss of generality, we have formulated Proposition 2.2.22 for initial trading
time t = 0. It also holds for t ∈ [0, T ]. This yields the desired barrier.
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Let us now illustrate our results by discussing some examples. For simplicity, take
constant resilience ρ > 0. Then the condition f ′

t + ρft ≥ 0 is equivalent to

2ρ2Kt + 3ρK ′
t +K ′′

t ≥ 0. (2.26)

Example 2.2.26. (Constant price impact Kt ≡ κ).
We recover our results from Subsection 2.2.1, f(t) ≡ 1

2
and δ∗ = 2 κx+δ

ρT+2
.

Example 2.2.27. (Exponential price impact Kt = κeνρt).
Let ν ∈ R be the slope of the exponential price impact relative to the resilience.
Condition (2.26) is satisfied for ν ≥ −1. Due to f(t) ≡ ν+1

ν+2
, we have constant Dt just

as in the constant impact case. The optimal strategy Θ ∈ A0(x) for δ = 0 is

△Θ0 =
xν(ν + 1)

1− e−νρT + ν(ν + 2)
, dΘt = ρe−νρt△Θ0dt, △ΘT =

xνe−νρT

1− e−νρT + ν(ν + 2)
.

The initial trade △Θ0 clearly approaches x for ν ր ∞ and the entire strategy does
not depend on κ. The corresponding barrier

c̃(t) =
Kt

δ∗f0

(
x−△Θ0 −

∫ t

0

dΘs

)
=

1 + ν − e−ρν(T−t)

ν(1 + ν)

is decreasing in time and ν. That is for small ν, the wait region is large since it is
attractive to trade close to maturity.

Instead of using the Euler-Lagrange formalism, this example could also be discussed as
an unconstrained optimization in discrete time. That is one would calculate the optimal
strategy by backward induction ignoring the constraint that only positive trades are
admissible. This gives an optimal barrier between a buy and an artificial sell region.
For ν ≥ −1, it coincides with the sought-after buy and wait region barrier since only
upward reflections from the barrier occur.

For ν < −1, Kte
−ρ(T−t) > KT for all t ∈ [0, T ). Hence, it is optimal to trade the

entire order at T . In this situation, c(t) ≡ ∞ since the decrease of Kt outweighs the
resilience.

Example 2.2.28. (Straight-line price impact Kt = κ+mt).
Let m > − κ

T
such that K is positive. Condition (2.26) is satisfied for m ≥ − 2κρ

3+2ρT
.

One can explicitly state the optimal strategy and barrier function in this case. As in
the previous example, we can check that it is optimal for

m ∈
(
− κ

T
,− κ

T

(
1− e−ρT

)]

to trade the entire order at T . However, the presented methods do not work for

m ∈
(
− κ

T

(
1− e−ρT

)
,− 2κρ

3 + 2ρT

)
.
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2.3 Geometric Brownian motion price impact, dis-

crete time

In the last section, we have seen how one can generalize the work of Obizhaeva and
Wang (2006) by allowing for deterministic price impact dynamics. This allows the
large investor to refine the impact model by fitting it, e.g., to drifts or trends that are
present in historic data. However, the investor deterministically fixes (Ks)s∈[t,T ] at the
beginning of the trading period and so the optimal strategy is also deterministically
fixed at initial time t. There are no adjustments due to new information that may
become available during the trading period. But this is exactly what one would like to
have, since it might, e.g., be sensible to accelerate trading when there happens to be
a lot of liquidity available in the order book. We get this feature of differential order
placement as soon as we include a diffusive term in our price impact model.

In this section, let us consider the time-inhomogeneous geometric Brownian motion
(GBM) as our illiquidity process. According to Lemma 1.3.1 and 1.3.3, the linear
structure of the GBM simplifies the optimization to a two-dimensional problem. But
even for this simplified problem, we cannot find a closed form solution. But under
Assumption SpecialGBM, which, e.g., covers the time-homogeneous GBM, we can show
in our main result Proposition 2.3.1 that the discrete time value function has WR-BR
structure. This does not hold for all time-inhomogeneous GBM as we will see in
Subsection 2.5.3.

Proposition 2.3.1. (SpecialGBM, discrete time case: WR-BR structure).
Under Assumption SpecialGBM, the discrete time value function has WR-BR structure.
a) If

∫ T

tn
(µ̄s + ρs) ds ≤ 0 for all n = 0, ..., N − 1, then cN (tn, κ) ≡ ∞ and

UN(tn, δ, x, κ) =
(
δe−

∫ T
tn

ρsds +
κ

2
e
∫ T
tn

µ̄sdsx
)
x. (2.27)

b) If
∫ tn+1

tn
(µ̄s + ρs) ds > 0 for all n = 0, ..., N − 1, then cN (tn, κ) =

c̃n
κ

for c̃n ∈ (0,∞)

andWN(tn, ·) is continuously differentiable at c̃n, three times continuously differentiable
everywhere else and BW

(
WN

)
(tn, ·) is convex and decreasing.

Recall the notation WN and BW from (1.23) and (1.26). In order to show Proposi-
tion 2.3.1 by backward induction, we need two lemmata, whose proofs are postponed
to the end of this subsection. The first lemma is independent of the choice of K and
does not use the existence of an optimal strategy.

Lemma 2.3.2. (Wait region adjusted dynamic programming).
Let UN (tn+1, ·, ·, ·) be continuous in δ and x, and consider (tn, δ, x, κ) such that x

δ
∈

WRN
tn(κ). Recall from (2.6) that an := exp(−

∫ tn+1

tn
ρsds). Then

UN (tn, δ, x, κ) = Etn,δ,κ

[
UN

(
tn+1, δan, x,Ktn+1

)]
. (2.28)
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Lemma 2.3.3. Let c̃ ∈ (0,∞), ϕ a density function on R and h : [0,∞) → [0,∞)
continuously differentiable at c̃, three times continuously differentiable everywhere else

and BW (h) convex. Then BW
(
h̃
)
is convex, where

h̃(z) :=

∫ ∞

−∞
e−rh(zer)ϕ(r)dr.

Proof of Proposition 2.3.1. a) Since WN corresponding to (2.27) satisfies BW
(
WN

)
>

0 and WW
(
WN

)
= 0 everywhere, it is optimal to trade everything at maturity.

b) Omit N in WN for notational convenience. The proof is by backward induction
with induction step from tn+1 to tn. Rewrite (2.28) from Lemma 2.3.2 as

W (tn, z) = Etn,δ,κ

[
a2n

κ

Ktn+1

W

(
tn+1, z

(
a−1
n

Ktn+1

κ

))]

= an

∫ ∞

−∞
e−rW (tn+1, ze

r)ϕn(r)dr =: WWR(tn, z).

We used that ln
(
a−1
n

Ktn+1

κ

)
has the following Gaussian density under the measure Ptn,κ:

ϕn(r) :=

(
2π

∫ tn+1

tn

σ̄2
sds

)− 1
2

exp


−

(
r −

∫ tn+1

tn
ρs + µ̄s − 1

2
σ̄2
sds
)2

2
∫ tn+1

tn
σ̄2
sds


 .

Since W (tn+1, ·) is continuously differentiable, we can define the smallest z such that
the wait region adjoins to the buy region

c̃n := inf
{
z ∈ [0,∞)

∣∣ BW
(
WWR

)
(tn, z) ≤ 0

}
, inf ∅ := ∞.

For c̃n <∞, set

WBR (tn, z) :=
WWR (tn, c̃n) +

1
2

(1 + c̃n)
2 (z + 1)2 − 1

2
.

Then BW
(
WBR

)
(tn, z) ≡ 0 and WWR (tn, c̃n) =WBR (tn, c̃n). Our aim is to prove

W (tn, z) =

{
WBR (tn, z) if z ∈ [c̃n,∞)
WWR (tn, z) otherwise

}
. (2.29)

This can be done by showing that BW
(
WWR

)
(tn, ·) is decreasing. As an induction
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hypothesis, we use that BW (W ) (tn+1, ·) is decreasing.

∂

∂z
BW

(
WWR

)
(tn, z) = ∂zW

WR (tn, z)− (1 + z) ∂zzW
WR (tn, z)

= an

∫ ∞

−∞
[∂zW (tn+1, ze

r)− (1 + z)er∂zzW (tn+1, ze
r)]ϕn(r)dr

= an

∫ ∞

−∞

[
∂

∂z
BW (W ) (tn+1, ze

r) + (1− er)∂zzW (tn+1, ze
r)

]
ϕn(r)dr

≤ an

∫ ∞

−∞
(1− er)∂zzW (tn+1, ze

r)ϕn(r)dr

Exploiting c̃n+1 ∈ (0,∞) and W (tn+1, z) =WBR (tn+1, z) for z ≥ c̃n+1 yields

lim
z→∞

∂

∂z
BW

(
WWR

)
(tn, z) ≤ 2an

WWR (tn+1, c̃n+1) +
1
2

(1 + c̃n+1)2

(
1− e

∫ tn+1
tn

(µ̄s+ρs)ds
)
.

That is BW
(
WWR

)
(tn, ·) is decreasing for large z and convex thanks to Lemma 2.3.3.

Therefore, it must be decreasing everywhere. This proves (2.29).

Due to Lemma 2.1.2 and limz→∞
∂
∂z
BW (WWR)(tn, z) < 0, c̃n ∈ (0,∞). It is clear

that W (tn, ·) is three times continuously differentiable on [0,∞) \ {c̃n}. We have

BW
(
WWR

)
(tn, c̃n) = BW

(
WBR

)
(tn, c̃n) = 0,

which is equivalent to ∂zW
WR (tn, c̃n) = ∂zW

BR (tn, c̃n). That is W (tn, ·) is continu-
ously differentiable at c̃n.

Proof of Lemma 2.3.2. Due to the dynamic programming principle, we can write

UN (tn, δ, x, κ) = inf
ξ∈[0,x]

{(
δ +

κ

2
ξ
)
ξ + Etn,δ,κ

[
UN

(
tn+1, (δ + κξ) an, x− ξ,Ktn+1

)]}

≤ Etn,δ,κ

[
UN

(
tn+1, δan, x,Ktn+1

)]
. (2.30)

Suppose for a contradiction that

UN (tn, δ, x, κ) < Etn,δ,κ

[
UN

(
tn+1, δan, x,Ktn+1

)]
.

Hence, the assumed continuity guarantees the existence of ξ ∈ (0, x) such that

UN (tn, δ, x, κ) =
(
δ +

κ

2
ξ
)
ξ + Etn,δ,κ

[
UN

(
tn+1, (δ + κξ)an, x− ξ,Ktn+1

)]
. (2.31)

We get a contradiction to x
δ
∈ WRN

tn(κ) by applying (2.30) in (2.31), i.e.,

UN (tn, δ, x, κ) ≥
(
δ +

κ

2
ξ
)
ξ + UN (tn, δ + κξ, x− ξ, κ) .



2.3 Geometric Brownian motion price impact, discrete time 63

Proof of Lemma 2.3.3. Compute

∂

∂z
BW (h̃) = h̃z − (1 + z)h̃zz,

∂2

∂z2
BW (h̃) = −(1 + z)h̃zzz,

h̃z(z) =

∫ ∞

−∞
hz(ze

r)ϕ(r)dr, h̃zz(z) =

∫ ∞

−∞
erhzz(ze

r)ϕ(r)dr.

Then u 7→
∫ u

−∞ erhzz(ze
r)ϕ(r)dr is continuous at u = ln

(
c̃
z

)
. But

u 7→ ∂

∂z

∫ u

−∞
erhzz(ze

r)ϕ(r)dr =

∫ u

−∞
e2rhzzz(ze

r)ϕ(r)dr

has a jump at u = ln
(
c̃
z

)
of size

lim
ǫ→0

∂

∂z

∫ ln( c̃
z)+

ǫ
2

ln( c̃
z)−

ǫ
2

erhzz(ze
r)ϕ(r)dr

= lim
ǫ→0

∫ ln( c̃
z)+

ǫ
2

ln( c̃
z )−

ǫ
2

e2r
hzz(c̃+)− hzz(c̃−)

ǫ
ϕ(r)dr

=
c̃2

z2
[hzz(c̃+)− hzz(c̃−)]ϕ

(
ln

(
c̃

z

))
.

That is

∂2

∂z2
BW (h̃)(z) = −(1 + z)h̃zzz(z)

= −(1 + z)

{∫ ∞

−∞
e2rhzzz(ze

r)ϕ(r)dr +
c̃2

z2
[hzz(c̃+)− hzz(c̃−)]ϕ

(
ln

(
c̃

z

))}

=

∫ ∞

−∞
e2r

∂2

∂z2
BW (h)(zer)

1 + z

1 + zer
ϕ(r)dr

−(1 + z)
c̃2

z2
[hzz(c̃+)− hzz(c̃−)]ϕ

(
ln

(
c̃

z

))
.

This term is positive since BW (h) is convex and therefore ∂
∂z
BW (h)(c̃+) > ∂

∂z
BW (h)(c̃−)

which is equivalent to hzz(c̃+) < hzz(c̃−).

Remark 2.3.4. (GBM: Situation at tN−1).
We can explicitly state the value function and the barrier at tN−1

WWR (tN−1, z) =
1

2
exp

(∫ tN

tN−1

µ̄sds

)
z2 + exp

(
−
∫ tN

tN−1

ρsds

)
z,

cN (tN−1, κ) =





1
κ

1−exp
(

−
∫ tN
tN−1

ρsds
)

exp
(

∫ tN
tN−1

µ̄sds
)

−exp
(

−
∫ tN
tN−1

ρsds
) if

∫ tN
tN−1

(µ̄s + ρs) ds > 0

∞ otherwise



 .

It is optimal not to trade at all at tN−1 if the negative drift ofK outweighs the resilience.
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Remark 2.3.5. (Time-inhomogeneous GBM: WR-BR-WR structure can occur).
At first glance, one would hope to have WR-BR structure for all time-inhomogeneous
GBM. One might have guessed that a generalization of Proposition 2.3.1 a) should
hold, i.e.,

∫ tn+1

tn
(µ̄s + ρs) ds ≤ 0 leads to c̃n = ∞. Astonishingly, this generalization

does not apply, since trades are dependent on K. In Subsection 2.5.3, we exploit this
dependence to construct a WR-BR-WR example.

In Subsection 2.4, it turns out that even for the time-homogeneous GBM, the cost
function is not necessarily convex in the strategy. Therefore, it is unclear how to
prove existence of an optimal strategy in continuous time in full generality and how to
transfer Proposition 2.3.1 from discrete to continuous time.

Also notice that the GBM leads to c(t, κ) = c̃(t)
κ
, i.e., optimal strategies are “passive in

the liquidity”. This terminology is chosen in analogy to aggressive and passive in the
money strategies that dynamically react to price changes; see Schied and Schöneborn
(2009). Due to z = κx

δ
, higher values of κ bring us from the no-trading into the trading

region. This can be explained as follows. An increased κ, i.e., decreased order book
height q, means according to our assumed resilience model that less fresh limit sell
orders flow into the book. This leads to an incentive to do a trade and attract new
limit orders, although this trade is quite expensive. The argument for decreased κ is
analogous: An increase of the limit order book height leads to a decrease of the optimal
extra spread. The order execution is delayed until the extra spread has sufficiently
reduced, although one misses out on inexpensive κ in the meantime. Hence, there is
a tradeoff between trading when κ is low and having a well balanced extra spread. In
case of the GBM, the extra spread dominates the tradeoff. As we shall see later, this
changes as soon as we introduce a pronounced mean-reversion in the drift of K. In the
following, let us formally introduce the notion of passive and aggressive in the liquidity
strategies and examine how it relates to the slope of the barrier in κ.

Aggressive versus passive in the liquidity strategies

Definition 2.3.6. (Aggressive versus passive in the liquidity).
Assume that the value function has WR-BR structure. Let Θ (t, δ, x, κ) be the unique
optimal strategy and x

δ
> c(t, κ). Then we call the initial trade

△Θt (t, δ, x, κ) = max

{
0,
x− c(t, κ)δ

1 + κc(t, κ)

}
(2.32)

aggressive/passive in the liquidity if it is decreasing/increasing with respect to κ.

Thus, a barrier that increases in κ guarantees aggressive in the liquidity trades. But
due to κ in the denominator of (2.32), things are not so clear in case of a decreasing
barrier. Let us summarize this issue in the following proposition.
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Proposition 2.3.7. (Barrier slope ! aggressive/passive trades).
Assume that the value function has WR-BR structure.
a) Let c(t, κ) be increasing in κ.

Then the optimal initial trade is aggressive in the liquidity for all x
δ
> c(t, κ).

b) Let x
δ
> c(t, κ) and let the optimal initial trade be passive in the liquidity.

Then c(t, κ) is strictly decreasing in κ.
c) Let K be a GBM.

Then the optimal initial trade is passive in the liquidity for all x
δ
> c(t, κ).

Proof. Statement a) and b) are immediate.

For statement c), notice that c(t, κ) = c̃(t)
κ
, c+ κcκ = 0 and

∂

∂κ

{
x− c(t, κ)δ

1 + κc(t, κ)

}
= −cκδ(1 + κc) + (c+ κcκ)(x− cδ)

(1 + κc)2
≥ 0.

Using the GBM, which is the standard model for positive diffusions, optimal strategies
are always passive in the liquidity. But in a real-life market, where the order book height
is mean-reverting, aggressive in the liquidity strategies are reasonable. The investor
would want to trade when liquidity is high, since it is likely to fall again afterwards.
Therefore, we do not want to limit our considerations to the GBM. Instead, let us
look at more general positive diffusion models for K that might better describe the
properties of a real-life market by, e.g., featuring mean-reversion.

2.4 General price impact diffusion

This section is going to contain a WR-BR result which can be applied quite flexibly
to various diffusions for K. We work under Assumption SpecialDiff. As we will show,
this ensures that our cost functional J is strictly convex. The convexity guarantees
uniqueness of the optimal strategy provided it exists. This uniqueness in turn excludes
WR-BR-WR situations since such an upper barrier between buy and wait region would
correspond to a non-uniqueness of the optimal strategy in the sense that it would be
optimal to wait and to do a strictly positive trade to the lower barrier between wait
and buy region. Similar to the deterministic case, we first perform this argument for
the discrete trading time case and then transfer it to continuous time. Again, we get
along without using the HJB equation.

However, convexity is not a necessary condition for uniqueness and Assumption Spe-
cialDiff is only sufficient for convexity. Therefore, there exist situations, not covered
by our proposition, in which uniqueness and WR-BR structure hold. On the other
hand, the WR-BR-WR examples from Subsection 2.5 indicate that it is not possible
to get along without any assumptions on K.
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Example 2.4.1. (Convexity for two trading instances).
Assume that trading is allowed at t0 = 0 and t1 = T only. Then

J (0, 0, (ξ0, ξ1), κ) =
κ

2
ξ20 + κξ0ξ1e

−
∫ T
0 ρsds +

Et0,κ[KT ]

2
ξ21

is strictly convex in the strategy ξ = (ξ0, ξ1) if and only if Et0,κ[KT ]− κe−2
∫ T
0 ρsds > 0.

This example clarifies that the cost functional J is not necessarily convex in general.

2.4.1 Existence of a unique optimal strategy

Under Assumption SpecialDiff, we show in Lemma 2.4.2 that J(Θ) is strictly convex.
This guarantees the uniqueness of an optimal strategy provided it exists. We can then
use the convexity together with the Komlós Theorem to finally get the existence of an
optimal strategy in Proposition 2.4.3. Although we consider continuous trading time
in this part, the results carry over to discrete time as well.

Lemma 2.4.2. (Costs convex in the strategy).
Let Assumption SpecialDiff hold. Then J(t, δ, ·, κ) is strictly convex on At.

Proof. Similar as in Lemma 2.2.11 for deterministic K, we demonstrate below that

J(Θ) =
1

2
Et,δ,κ

[
D2

T+

KT
− δ2

κ
+

∫

[t,T ]

ηsD
2
sds

]
(2.33)

with ηt :=
2ρt
Kt

+ µ(t,Kt)

K2
t

− σ2(t,Kt)

K3
t

from Assumption SpecialDiff i) being strictly positive.

Therefore, the right-hand side is convex in the process (Ds)s∈[t,T ]. Moreover, D is linear
in the strategy Θ. Thus, for two strategies Θ′,Θ′′ ∈ At with corresponding D′, D′′ both
starting in D′

t = D′′
t = δ, we have J(νΘ′ + (1− ν)Θ′′) < νJ(Θ′) + (1− ν)J(Θ′′) for all

ν ∈ (0, 1) as desired. Hence, we only need to show (2.33).

Define the local martingale Ms :=
∫
[t,s∧T ]

D2
uσ(u,Ku)
2K2

u
dWK

u for s ∈ [t,∞). That is τn =

{s ≥ t| 〈M〉s ≥ n} is an increasing sequence of stopping times such that τn ր ∞ a.s.
andM τn is a martingale for every n. In particular, E[MT∧τn ] = 0. Due to the monotone
convergence theorem and τn ≥ T a.s. for large n,

J(Θ) = lim
n→∞

E

[∫

[t,T∧τn]

(
Ds +

Ks

2
△Θs

)
dΘs

]
.

Using dΘs =
dDs+ρsDsds

Ks
and △Θs =

△Ds

Ks
, we get

J(Θ) = lim
n→∞

E

[∫

[t,T∧τn]

Ds +
1
2
△Ds

Ks

dDs +

∫

[t,T∧τn]

ρsD
2
s

Ks

ds+

∫

[t,T∧τn]

1
2
△DsρsDs

Ks

ds

]
.
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The last integral is zero, since D has at most countably many jumps. With integration
by parts for càglàd processes,

∫

[t,T∧τn]

Ds

Ks
dDs =

D2
(T∧τn)+
K(T∧τn)

− δ2

κ
−
∫

[t,T∧τn]
Dsd

(
D

K

)

s

−
∑

s∈[t,T∧τn]

(△Ds)
2

Ks
.

Use d
(
D
K

)
s
= 1

Ks
dDs +Dsd

(
1
Ks

)
and rearrange terms to get

∫

[t,T∧τn]

Ds

Ks

dDs =
1

2



D
2
(T∧τn)+
K(T∧τn)

− δ2

κ
−
∫

[t,T∧τn]
D2

sd

(
1

Ks

)
−

∑

s∈[t,T∧τn]

(△Ds)
2

Ks



 .

Applying Itô’s formula

dqs = d

(
1

Ks

)
=

(
σ2(s,Ks)

K3
s

− µ(s,Ks)

K2
s

)
ds− σ(s,Ks)

K2
s

dWK
s

yields

∫

[t,T∧τn]

(
Ds +

Ks

2
△Θs

)
dΘs =

1

2

[
D2

(T∧τn)+
KT∧τn

− δ2

κ
+

∫

[t,T∧τn]
ηsD

2
sds+MT∧τn

]
.

The assertion follows, since Assumption SpecialDiff ii) and iii) together with Lebesgue’s
dominated convergence theorem guarantee

E

[
D2

(T∧τn)+
KT∧τn

]
−−−→
n→∞

E

[
D2

T+

KT

]
, E

[∫

[t,T∧τn]
ηsD

2
sds

]
−−−→
n→∞

E

[∫

[t,T ]

ηsD
2
sds

]
.

Proposition 2.4.3. (Existence of a unique optimal strategy).
Let Assumption SpecialDiff hold. Then there exists a unique optimal strategy, i.e. there
exists Θ∗ ∈ At(x) with

J (t, δ,Θ∗, κ) = inf
Θ∈At(x)

J (t, δ,Θ, κ) .

Proof. Thanks to Lemma 2.4.2, we only need to prove existence. We start by showing
that there exists a sequence of strategies

(
Θ

n)
that converges weakly to a strategy Θ∗

and minimizes the costs J , i.e., limn→∞ J
(
Θ

n)
= infΘ∈At(x) J(Θ). We conclude by

deducing that limn→∞ J(Θ
n
) = J(Θ∗).

Let (Θj) be a minimizing sequence of J . Due to the Komlós Theorem in the form of
Lemma 3.5 from Kabanov (1999), there exists a Cesaro convergent subsequence (Θjm).
That is

Θ
n
:=

1

n

n∑

m=1

Θjm
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converges in At(x) to a strategy Θ∗ in the following sense. For almost every ω, the mea-
sures Θ

n
(ω) on [t, T ] converge weakly to the measure Θ∗(ω). Equivalently, for s ∈ [t, T ]

and almost every ω, we have limn→∞Θ
n

s = Θ∗
s whenever △Θ∗

s = 0. Note that Θ∗
T+ = x

a.s. Moreover,
(
Θ

n)
is again a minimizing sequence, since J is convex.

It remains to show that Θ∗ attains the infimum. Applying (2.33) yields

J
(
Θ

n)
=

1

2
E

[(
Dn

T+

)2

KT
− δ2

κ
+

∫

[t,T ]

ηs (D
n
s )

2 ds

]
, (2.34)

J (Θ∗) =
1

2
E

[(
D∗

T+

)2

KT

− δ2

κ
+

∫

[t,T ]

ηs (D
∗
s)

2 ds

]
. (2.35)

Based on Lemma 2.2.10, limn→∞Dn
s = D∗

s for almost every ω and every point s ∈
[t, T+] of continuity of Θ∗. With Lebesgue’s dominated convergence theorem and As-
sumption SpecialDiff ii), iii), it is obvious from (2.34) and (2.35) that limn→∞ J

(
Θ

n)
=

J (Θ∗).

2.4.2 Wait and buy region structure

Under Assumption SpecialDiff, we will now exploit the uniqueness of the optimal strat-
egy to prove WR-BR structure. Proposition 2.4.5 treats the discrete time case, which
is then transfered to continuous time in Proposition 2.4.9. The following lemma is
essential.

Lemma 2.4.4. (V continuous in y).
Let Assumption SpecialDiff hold. Then V (t, ·, κ) is continuous.

Proof. The continuity in y = 0 follows from the argument

U (t, 1, 0, κ) = 0 ≤ U (t, 1, ǫ, κ) ≤
(
1 +

κ

2
ǫ
)
ǫ

ǫ→0→ 0.

For y > 0 and all sequences of positive numbers with y1,j ր y, y2,j ց y, let us show

V1 := lim
j→∞

V
(
t, y1,j, κ

)
= lim

j→∞
V
(
t, y2,j, κ

)
=: V2.

It is clear that V1 ≤ V2, since V is increasing in y. In the following, we prove V1 ≥ V2.

Define the ratio ψj := y2,j

y1,j
ց 1 and Θi,j := Θ∗ (t, 1, yi,j, κ) for i ∈ {1, 2}, where Θ∗

denotes the corresponding optimal strategy. Then,

V
(
t, y2,j, κ

)
= U

(
t, 1, y2,j, κ

)
= J

(
t, 1,Θ2,j, κ

)
≤ J

(
t, 1, ψjΘ

1,j , κ
)
= V

(
t, y1,j, κ

)
+△Jj.

with
△Jj := J

(
t, 1, ψjΘ

1,j , κ
)
− J

(
t, 1,Θ1,j, κ

)
.
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The assertion follows since limj→∞△Jj = 0. This is due to (2.33),

Ds

(
ψjΘ

1,j
)
−Ds

(
Θ1,j

) j→∞→ 0

a.s. for all s ∈ [t, T+] and again Lebesgue’s dominated convergence theorem together
with Assumption SpecialDiff ii), iii).

Proposition 2.4.5. (Discrete time case: WR-BR structure).
Let Assumption SpecialDiff hold. Then the value function UN has WR-BR structure.

Proof. According to Proposition 2.1.4 and 2.4.3, we only need to show that the optimal
initial trade △Θ∗

tn (tn, δ, x, κ) is increasing in x. Thanks to the scaling in Lemma 1.3.1,

△Θ∗
tn (tn, δ, x, κ) = δ△Θ∗

tn

(
tn, 1,

x

δ
, κ
)
.

Due to the splitting argument from Lemma 2.1.5 and the uniqueness of the optimal
strategy, △Θ∗

tn (tn, 1, ·, κ) must be increasing and continuous apart from a possible
discontinuity in the form of a jump back to zero. That is there might exist y > 0
with △Θ∗

tn (tn, 1, y−, κ) > 0 and △Θ∗
tn (tn, 1, y+, κ) = 0. In the following, we exclude

such discontinuities using a Komlós argument as in the proof of Proposition 2.4.3, the
continuity of V in y and the uniqueness.

Suppose for a contradiction that such a discontinuity exists in y > 0. Take the notation
and monotonic sequences (yi,j) from the proof of Lemma 2.4.4. Since V is continuous
in y,

J
(
tn, 1,Θ

1,j, κ
)
= V

(
tn, y

1,j, κ
) j→∞→ V (tn, y, κ) .

Define bj :=
y

y1,j
ց 1. As in the proof of Lemma 2.4.4, one shows that

J
(
tn, 1, bjΘ

1,j , κ
)
− J

(
tn, 1,Θ

1,j, κ
) j→∞→ 0.

Therefore, (bjΘ
1,j) is a minimizing sequence, i.e., bjΘ

1,j ∈ AN
tn(y) and

lim
j→∞

J
(
tn, 1, bjΘ

1,j , κ
)
= V (tn, y, κ) .

As in the proof of Proposition 2.4.3, we can take this minimizing sequence to de-
fine Θ as the weak limit of the averaged sum over a subsequence of (bjΘ

1,j) such
that J(tn, 1,Θ, κ) = V (tn, y, κ). Due to the construction of Θ,

△Θtn (tn, 1, y, κ) > 0.

Analogously, one constructs Θ from the sequence
(

y
y2,j

Θ2,j
)
with initial trade

△Θtn (tn, 1, y, κ) = 0.

This is a contradiction to the uniqueness of the optimal strategy.
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Remark 2.4.6. Notice that this argument does not hold for continuous trading time.

Having proved the WR-BR result for discrete time, let us now transfer it to continuous
time in Proposition 2.4.9. To do so, we need Lemma 2.4.7 and Lemma 2.4.8.

Lemma 2.4.7. (Approximation via step functions).
Let Assumption SpecialDiff hold. For Θ ∈ At(x), let Θ

N ∈ A2N

t (x) be its approximation
from below by an equidistant grid step function. More precisely, define T 0

t := {t, T},
T N+1
t := T N

t ∪
{(
s+ T−t

2N+1

)
∧ T |s ∈ T N

t

}
and

ΘN
s :=





0 if s = t
Θu+ if s ∈

(
u, u+ T−t

2N

]
, u ∈ T N

t

x if s = T+



 .

Then J (t, 1,Θ, κ) = limN→∞ J
(
t, 1,ΘN , κ

)
.

Proof. Proceed as at the end of the proof of Proposition 2.4.3. That is we only need to
show that ΘN converges weakly to Θ. Due to T N

t ⊂ T N+1
t , ΘN is increasing in N . For

all s ∈ [t, T+], the sequence
(
ΘN

s

)
N∈N is bounded above by Θs. Hence, it is convergent.

Due to the definition of ΘN , we must even have limN→∞ΘN
s = Θs for all s ∈ [t, T ]

where △Θs = 0.

Lemma 2.4.8. (Cesaro weak convergence).
Fix t ∈ [0, T ], κ ∈ (0,∞) and for various x ∈ [0,∞) consider

(
ΘN (t, 1, x, κ)

)
N∈N ⊂ At(x).

Then there exists a subsequence Nj(t, κ), which does not depend on x, and a set of
strategies Θ̃(t, 1, ·, κ) such that for all x ∈ [0,∞) ∩Q

1

m

m∑

j=1

ΘNj (t, 1, x, κ)
w−−−→

m→∞
Θ̃ (t, 1, x, κ) . (2.36)

Proof. Since Q is countable, we can write [0,∞)∩Q = {x1, x2, ...}. For each x ∈ [0,∞),
the Komlós Theorem guarantees the existence of a subsequence Nj (t, x, κ) such that

the desired weak convergence holds. That is we get (N
(1)
j )j∈N ⊂ N for x1 and extract the

subsequence N
(2)
j for x2 from N

(1)
j etc. The Cantor diagonal sequence Nj := N

(j)
j then

guarantees the Cesaro weak convergence of ΘNj (t, 1, x, κ) for all x ∈ [0,∞) ∩Q.

Proposition 2.4.9. (Continuous time: WR-BR structure).
Let Assumption SpecialDiff hold. Then the value function U has WR-BR structure.

Proof. As in the proof of Proposition 2.4.5, we only need to exclude the jump back to
zero of x 7→ △Θ∗

t (t, 1, x, κ). Let Θ
N ∈ A2N

t (x) be the approximation of Θ∗ ∈ At(x) by
step functions from below as in Lemma 2.4.7. Then

J (t, 1,Θ∗, κ) = lim
N→∞

J
(
t, 1,ΘN , κ

)
.
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Let Θ∗N be the unique optimal strategy within A2N

t (x), i.e.

J
(
t, 1,ΘN , κ

)
≥ J

(
t, 1,Θ∗N , κ

)
≥ J (t, 1,Θ∗, κ) .

Hence,
J (t, 1,Θ∗, κ) = lim

N→∞
J
(
t, 1,Θ∗N , κ

)
.

That is for each x ∈ [0,∞), (Θ∗N(t, 1, x, κ))N∈N is a minimizing sequence, and for
each N ∈ N, x 7→ △Θ∗N

t (t, 1, x, κ) is increasing thanks to Proposition 2.4.5.

Apply Lemma 2.4.8 to Θ∗N . Since the cost function is convex in the strategy and our
optimal strategy is unique, the resulting Θ̃(t, 1, ·, κ) must coincide with Θ∗(t, 1, ·, κ)
for all x ∈ [0,∞) ∩ Q. Setting Θ

∗Nj

t (t, 1, x, κ) := Θ
∗Nj

t+ (t, 1, x, κ) and Θ̃t(t, 1, x, κ) :=

Θ̃t+(t, 1, x, κ) does not disturb the corresponding weak convergence in (2.36). We then

have a pointwise convergence at t such that the monotonicity of x 7→ Θ
∗Nj

t (t, 1, x, κ)
transfers to Θ̃ as desired. Since we only need to exclude the downward jump, it suffices
to have this monotonicity on the rational numbers.

Example 2.4.10. Let K be deterministic such that ηs ≤ 0 for all s ∈ [t, T ], e.g. Ks =
e−αs with α ≥ 2ρ. We can easily construct two different strategies Θ′,Θ′′ ∈ At(x) such
that the corresponding deviation processes satisfy D′

T+ = D′′
T+. According to (2.33), J

is not strictly convex for this choice ofK and Proposition 2.4.9 does not apply. Nonethe-
less, we know from Subsection 2.2.3 that a unique optimal strategy exists and WR-BR
structure holds in the deterministic case.

2.4.3 On the convexity assumptions

Under Assumption SpecialDiff, we proved existence and uniqueness of optimal strate-
gies in Subsection 2.4.1 and WR-BR structure in Subsection 2.4.2. That is our results
apply to positive diffusions K that satisfy the following three conditions.

Assumption. (Technical assumptions on K).

i) ηt :=
2ρt
Kt

+ µ(t,Kt)
K2

t
− σ2(t,Kt)

K3
t

> 0 for all t ∈ [0, T ]

ii) E

[
supt∈[0,T ] K

2
t

inft∈[0,T ] Kt

]
<∞

iii) E

[(∫ T

0
|ηt|dt

) (
supt∈[0,T ]K

2
t

)]
<∞

We now aim to show that these are not merely abstract assumptions, but are indeed
satisfied for some standard processes. We start with deterministic K and the time-
homogeneous GBM, where we have already seen WR-BR results in Section 2.2 and 2.3.
We could go ahead with any desired positive diffusion for K. As an example, we
pick the Cox-Ingersoll-Ross (CIR) process. With its mean-reversion, it is particularly
interesting from an economic point of view such that we also take the CIR process for
our numerical illustrations in Section 3.3.



72 Structural results on optimal execution strategies

Proposition 2.4.11. (Deterministic case).

Take Assumption Smooth with 2ρt +
K ′

t

Kt
> 0 for all t ∈ [0, T ].

Then Assumption SpecialDiff holds.

Proof. Condition i) is equivalent to 2ρt +
K ′

t

Kt
> 0 and ii), iii) are clearly satisfied for

deterministic, continuous K.

Proposition 2.4.12. (GBM case).
Take Assumption GBM with constant ρ, µ̄, σ̄ and 2ρ+ µ̄− σ̄2 > 0.
Then Assumption SpecialDiff holds.

Proof. i) We have ηt =
1
Kt

(2ρ+ µ̄− σ̄2) > 0. ii) Thanks to Hölder’s inequality,

E

[(
supt∈[0,T ]Kt

)2

inft∈[0,T ]Kt

]
≤ E

[
sup

t∈[0,T ]

K4
t

] 1
2

E

[
sup

t∈[0,T ]

q2t

] 1
2

.

Using the explicit form of the GBM, Kt = K0e
σ̄WK

t +
(

µ̄− σ̄2

2

)

t
, yields

E

[
sup

t∈[0,T ]

K4
t

]
≤ K4

0 max

{
1, e

4
(

µ̄− σ̄2

2

)

T

}
E

[
exp

(
4σ̄ sup

t∈[0,T ]

WK
t

)]
.

This expression is finite due to the reflection principle. It says that (supt∈[0,T ]W
K
t )

has the same distribution as the absolute value of a Brownian motion at time T . The
second expectation in the product above is finite, since qt =

1
Kt

is also a GBM with

drift (σ̄2 − µ̄) and volatility σ̄. iii) Due to the form of ηt, it is enough to consider

E




∫ T

0

(
sup

t∈[0,T ]

Kt

)2
1

Kt
dt



 ≤ T E

[(
supt∈[0,T ]Kt

)2

inft∈[0,T ]Kt

]
.

This term is finite according to ii).

Proposition 2.4.13. (CIR case).
Take Assumption SpecialCIR. Then Assumption SpecialDiff holds.

Recall the Burkholder-Davis-Gundy Inequalities. See, e.g., Karatzas and Shreve (2000),
page 166 for a proof.

The Burkholder-Davis-Gundy Inequalities.
For every m > 0, there exist universal positive constants km and Km such that

kmE [〈M〉mτ ] ≤ E

[(
max
t≤τ

|Mt|
)2m

]
≤ KmE [〈M〉mτ ]

for every continuous local martingale M and every stopping time τ .
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Proof of Proposition 2.4.13.
The CIR process stays a.s. strictly positive, as the Feller condition 2µ̄K̄ ≥ σ̄2 is met.
Moreover, it turns out that ηt =

1
Kt
(2ρ − µ̄) + 1

K2
t
(µ̄K̄ − σ̄2) > 0 under Assumption

SpecialCIR. Condition ii) and iii) both hold by showing

E

[(
supt∈[0,T ]Kt

)2
(
inft∈[0,T ]Kt

)2

]
<∞.

Thanks to Hölder’s inequality,

E

[(
supt∈[0,T ]Kt

)2
(
inft∈[0,T ]Kt

)2

]
≤ E

[
sup

t∈[0,T ]

K8
t

] 1
4

E

[
sup

t∈[0,T ]

q
8
3
t

] 3
4

. (2.37)

Since the drift of the CIR process is bounded above, we can isolate the local martingale
part of K to use the Burkholder-Davis-Gundy Inequality. For positive constants c̄n,

E

[
sup

t∈[0,T ]

K8
t

]
≤ c̄1

{
(
µ̄K̄T

)8
+ E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

σ̄
√
KsdW

K
s

∣∣∣∣
8
]}

(2.38)

≤ c̄2

{
(
µ̄K̄T

)8
+ E

[(∫ T

0

σ̄2Ksds

)4
]}

.

This expression is finite, since all positive moments of the CIR process exist. See, e.g.,
Filipovic and Mayerhofer (2009).

It remains to show that the second term from the right hand side of (2.37) is finite.
The order book height is an inverse CIR process and can be described by

dqt =
(
µ̄qt −

(
µ̄K̄ − σ̄2

)
q2t
)
dt− σ̄q

3
2
t dW

K
t .

With these preparations, we can proceed analogously to (2.38)

E

[
sup

t∈[0,T ]

q
8
3
t

]
≤ c̄3





(
µ̄2T

4
(
µ̄K̄ − σ̄2

)
) 8

3

+ E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

σ̄q
3
2
s dW

K
s

∣∣∣∣

8
3

]


≤ c̄4






(
µ̄2T

4
(
µ̄K̄ − σ̄2

)
) 8

3

+ E

[(∫ T

0

σ̄2q3sds

) 4
3

]

 . (2.39)

We are done, since E
[
(
∫ T

0
q3sds)

4
3

]
≤ c̄5

∫ T

0
E[q4s ]ds and the fourth moment of the inverse

CIR process exists for µ̄K̄ > 2σ̄2. For an explicit calculation of the negative moments
of the CIR process, see, e.g., Ahn and Gao (1999).
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2.5 Counterintuitive trading regions

We have seen a variety of approaches how to prove WR-BR structure for different
assumptions on K. Nevertheless, we did not succeed in showing this result in full
generality. In this section, let us demonstrate the existence of situations where, when
there is a large number of shares remaining to be purchased, we wait rather than buy,
contrary to what might be expected. That is there are indeed examples with WR-
BR-WR structure. First of all, let us consider three trading instances and successively
present a binomial model, a CIR process and a time-inhomogeneous GBM that all lead
to a WR-BR-WR example. Afterwards, a binomial model for K in continuous trading
time is given. However, we could not work out a WR-BR-WR example for the CIR
process or the time-inhomogeneous GBM in continuous time.

According to Proposition 2.2.4, WR-BR structure holds in full generality for the deter-
ministic case. Therefore, K has to contain some kind of stochastics in order to produce
a WR-BR-WR example. Moreover, the following proposition verifies that we need to
have at least three trading instances. It shows that WR-BR structure always applies
for two trading instances.

Proposition 2.5.1. (WR-BR structure for two trading instances).
Let N = 1, i.e. 0 = t0 < t1 = T . Then the value function has WR-BR structure with

V 1 (t0, y, κ) =
1

2
Et0,κ[KT ]y

2 + a0y −
{

[(Et0,κ[KT ]−κa0)y−(1−a0)]
2

2κ+2Et0,κ[KT ]−4κa0
if y > c (t0, κ)

0 otherwise

}
,

c (t0, κ) =

{ 1−a0
Et0,κ[KT ]−κa0

if Et0,κ[KT ] > κa0

∞ otherwise

}
.

Proof. We know that U1(t1, δ, x, κ) = (δ + κ
2
x)x. The assertion follows from

U1(t0, δ, x, κ) = min
ξ∈[0,x]

{(
δ +

κ

2
ξ
)
ξ + Et0,κ

[
U1 (t1, (δ + κξ)a0, x− ξ,KT )

]}
.

2.5.1 Binomial model in discrete time

In view of the discussions above, it is natural to construct a WR-BR-WR example for
three trading instances {t0, t1, t2} and two states of the world Ω = {ωA, ωB} each being
equally likely. To fully specify this binomial model, we can choose seven constants

a0, a1, κ0, κ
A
1 := Kt1 (ωA) , κ

A
2 := Kt2(ωA), κ

B
1 := Kt1(ωB), κ

B
2 := Kt2(ωB).

Let us explain our parameter choice given in Figure 2.3. It guarantees c(t1, κ
A
1 ) =

c(t1, κ
B
1 ) = 1, which simplifies our calculations. The main idea is to take model param-

eters such that the backward induction, that we did to prove WR-BR structure for the
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a0=0.9999 a1=0.5

Figure 2.3: Seven constants that specify the binomial model with three trading instances.

deterministic case, does not work anymore. With dynamic programming (1.13),

U2 (t0, δ, x, κ0) = min
ξ∈[0,x]

Ũ2 (t0, δ, x, κ0, ξ) , (2.40)

Ũ2 (t0, δ, x, κ0, ξ) :=
(
δ +

κ0
2
ξ
)
ξ + Et0

[
U2 (t1, (δ + κ0ξ) a0, x− ξ,Kt1)

]
,

where the exponents indicate that N = 2. We can compute this expectation using
Proposition 2.5.1:

Et0

[
V 2 (t1, y,Kt1)

]
=

1

2

[
V 2
(
t1, y, κ

A
1

)
+ V 2

(
t1, y, κ

B
1

)]

=
κA2 + κB2

4
y2 + a1y −

1

2

{ ∑
C∈{A,B}

[(κC
2 −κC

1 a1)y−(1−a1)]
2

2κC
1 +κC

2 −4κC
1 a1

if y > 1

0 otherwise

}

This term is piecewise quadratic in y with coefficients depending on a1, κ
A
1 , κ

A
2 , κ

B
1 , κ

B
2 .

For y > 1, our parameters ensure that inequalities (2.7) are violated. More precisely,

4αγ + β − β2 = −0.3125 < 0.

Scenario A is the liquid scenario and B corresponds to an illiquid market. We can hope
to get a counterexample for this choice of parameters, but we still have to check this.
To do so, we take different x and plot

ξ 7→ Ũ2 (t0, 1, x, 1.95, ξ) .

The result is given in Figure 2.4. When the total order is as small as x = 0.9, it is opti-
mal not to do an initial trade. The transition from wait to buy region is approximately
at x = 0.95. For x = 1, we are in the buy region and one optimally trades about two
percent of the total order at time t0. But at x = 5.75, we switch from buy to wait
region and stay in the wait region for all larger values of x. The graph for x = 5.75
nicely illustrates the non-uniqueness of the optimal strategy at the transition from buy
to wait region.

To get the entire picture, one can now analyze the situation for different values of κ0.
Figure 2.5 indicates for each point (κ0, x) if it belongs to the buy or wait region. It is
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Figure 2.4: For the parameters from Figure 2.3 and total order size x = 0.9, 1, 5.75, 20,
the graphs plot the dependence of the costs Ũ2 (t0, 1, x, 1.95, ξ) on the initial trade ξ.
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Figure 2.5: For the parameters from Figure 2.3, but different values of κ0, we illustrate the
wait and buy region. Looking more closely at the large dot (κ0, x) = (2, 1) yields the picture
on the right-hand side. The buy region has the shape of a wedge.
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created by computing the optimal initial trade ξ(κ0, x) of Ũ
2 (t0, 1, x, κ0, ξ) analytically.

WR-BR-WR structure occurs for κ0 ∈ (1.94, 2). The upper barrier from buy to wait
region has an asymptote at κ0 = 1.94. For the case κ0 = 1.95 that we discussed in
Figure 2.4, the small dots on the right-hand side of Figure 2.5 point out the transitions
from wait to buy region and buy to wait region respectively. For expensive κ0 ≥ 2, we
are not trading irrespectively of the size of the total order. For inexpensive κ0 ≤ 1.94,
we have the usual WR-BR situation. On the interval in between, the large investor
has an incentive not to trade for large positions x. The resilience between t0 and t1 is
extremely low and waiting until t1 has the advantage of gaining information whether
scenario A or B has occurred. That is there is a tradeoff between gaining information
by waiting until the next time instance and attracting resilience by trading right now.

2.5.2 Cox-Ingersoll-Ross process, discrete time

The question arises if the toy example of the last section is totally artificial. Does it still
work for more realistic models like the CIR process or the time-inhomogeneous GBM?
Does it still work when trading is allowed in continuous time? The answer to both
questions is yes. We tackle the first one in this subsection by taking CIR parameters
which are inspired by the binomial model above. We can then confirm WR-BR-WR
structure for three trading instances. In the next subsection, the same thing is done
for the GBM. The second question is addressed in the last subsection by analyzing a
binomial model in continuous trading time.

Let us consider a CIR process dKs = µ̄
(
K̄ −Ks

)
ds+ σ̄

√
KsdW

K
s , constant resilience

and trading times {t0, t1, t2} with t0 = 0. That is we need to specify six constants

t1 = 0.0072, t2 = 1.0072, ρ = 1.3863,

µ̄ = 0.6931, K̄ = 1, σ̄ = 5.2523. (2.41)

For this choice, Assumption SpecialCIR is not satisfied. That is we were not able to
prove WR-BR structure. There are some similarities to the binomial model from above.
E.g. the high volatility makes illiquid scenarios with Kt >> K̄ likely to occur. Also
the other parameters are chosen to tendentially reproduce the toy model with

e−ρt1 ≈ 0.99, e−ρ(t2−t1) ≈ 0.25, Et0,κ0=2.005[Kt1 ] = Et1,Kt1=3[Kt2 ] = 2.

It turns out that this CIR model leads to a WR-BR-WR example. With Proposi-
tion 2.5.1 and taking the density function of the CIR process together with a numerical
integration, we can compute Ũ2 (t0, 1, x, κ0, ξ) from (2.40). For each point (κ0, x), we
calculate the costs for different trades ξ from an equidistant grid {0, dξ, ..., x}. The
point (κ0, x) belongs to the wait region if and only if the costs for ξ = 0 are smaller
than the costs on the remaining grid. Doing this procedure for several points (κ0, x)
yields Figure 2.6.

As for the binomial model, there exist choices of κ0 that lead to WR-BR-WR structure.
But instead of a wedge-shaped buy region, we get a tongue-shaped upper wait region,
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which is located around the mean-reversion level K̄ = 1. This is a qualitative difference.
That is for large values of κ0, we do not have a pure wait region anymore.

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

x

κ
0

BR

WR

Figure 2.6: This figure shows a WR-BR-WR example for the CIR process with parame-
ters (2.41) and three trading instances. Points (κ0, x) ∈ {0.1, 0.2, ..., 2.1}×{0.2, 0.4, ..., 8} are
considered. The wait region is shaded black.

2.5.3 Geometric Brownian motion, discrete time

Let us consider a GBM dKs = Ks(µ̄sds+ σ̄dW
K
s ) with time-inhomogeneity in the drift,

constant resilience and {t0, t1, t2} with t0 = 0. That is we need to specify six constants

t1 = 0.0072, t2 = 1.0072, ρ = 1.3863,

µ̃1 = −1.5, µ̃2 = −1.35, σ̄ = 5.2523 (2.42)

with µ̄s ≡ µ̃1 on [t0, t1] and µ̄s ≡ µ̃2 on (t1, t2]. Let us motivate this choice.

According to Proposition 2.5.1, µ̃2 ≤ −ρ yields c̃(t1) = ∞. That is we would only
consider two trading instances {t0, t2}. But with two trading instances, we cannot
construct a WR-BR-WR example. Therefore we have to choose µ̃2 > −ρ. We also
need to have µ̃1 < −ρ. Otherwise, Proposition 2.3.1 would apply. So we can fix

µ̃1 < −ρ and µ̃2 > −ρ. (2.43)

Then we see from the proof of Proposition 2.3.1 b) that

lim
z→∞

∂

∂z
BW

(
WWR

)
(t0, z) > 0.

Hence, large values of z = κ0x
δ

must be in the WR. That is we either have

i) WR-BR-WR structure or
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ii) we optimally never trade at t0 irrespective of z.

Let us point out how i) is possible, although µ̃1 < −ρ strongly suggests ii). Compare
two strategies Θ,Θ′ ∈ A2

0(x) described by the trades (ξ0, ξ1, ξ2), (0, ξ0 + ξ1, ξ2). Heuris-
tically, if only case ii) would occur, this would suggest J(Θ) − J(Θ′) ≥ 0. So let us
check if this difference can become negative. Define

I0 := δ +
κ0
2
ξ0 − δe−ρt1 − Et0,κ0[Kt1 ]

2
ξ0 ≥ 0,

I1 := Et0,κ0

[(
κ0e

−ρt1 −Kt1

)
ξ1
]
,

I2 := Et0,κ0

[(
κ0e

−ρt2 −Kt1e
−ρ(t2−t1)

)
ξ2
]
.

Then

J (0, δ,Θ, κ0)− J (0, δ,Θ′, κ0) = (I0 + I1 + I2) ξ0.

For ξ1, ξ2 deterministic or independent of Kt1 , we would directly get I1, I2 ≥ 0 and
therefore J(Θ)− J(Θ′) ≥ 0. But we know from above that the optimal trade

ξ∗1 = max{0, ξ̃∗1} with ξ̃∗1 =
x− ξ0 − c̃(t1)

Kt1
(δ + κ0ξ0) e

−ρt1

1 + c̃(t1)

is passive in the liquidity. That is the scenarios ω with high Kt1(ω) get a high weight-
ing ξ∗1(ω). Heuristically, small values of t1 and large (t2 − t1) make I0 and I2 negligible
such that we can concentrate on I1. Plugging ξ1 = ξ̃∗1 into I1 yields

I1 =
(x− ξ0)κ0

(
e−ρt1 − eµ̃1t1

)

1 + c̃(t1)
+

c̃(t1)

1 + c̃(t1)
(δ + κ0ξ0) e

−ρt1

(
1− κ0e

−ρt1Et0,κ0

[
1

Kt1

])
.

Since 1
Kt

for t ∈ [t0, t1] is a GBM with drift (σ̄2 − µ̃1), we get

Et0,κ0

[
K−1

t1

]
= κ−1

0 exp
(
σ̄2 − µ̃1

)
.

Therefore, I1 and in turn J(Θ) − J(Θ′) gets negative, as soon as we choose σ̄ large
enough. According to Proposition 2.5.1, we have c̃(t1) → ∞ as µ̃2 ց −ρ. That is the
first summand in I1 is positive, but gets small for µ̃1 ≈ µ̃2 ≈ −ρ. In summary, param-
eter choices with small t1, large t2, σ̄ and µ̃1 ≈ µ̃2 ≈ −ρ satisfying condition (2.43) are
likely to produce a WR-BR-WR example.

We check this for our parameter choice (2.42). For various x ∈ [0,∞), consider how
the costs (2.40) depend on the initial trade

ξ 7→ Ũ2 (t0, 1, x, 1, ξ) .

Thereby, Kt1 is log-normally distributed and using Proposition 2.5.1, the expectation
within Ũ2 can be computed by a numerical integration. It turns out that the optimal
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initial trade is strictly positive for roughly x ∈ (108, 778) which is the buy region.
Smaller and larger values of x lie in the wait region.

We finally succeed in constructing a WR-BR-WR example in discrete trading time for
the time-inhomogeneous GBM. Remember that we can do both dimension reductions
in case of the GBM. That is the presented example leads to WR-BR-WR structure for
each initial value κ0 of K and the buy region is tubular in κ0.

2.5.4 Binomial model in continuous time

t

Kt

k0=2.1

t =00 t =0.00011 T=1

k
B

=3

k
A

=1

Figure 2.7: Binomial model in continuous time with two equally likely scenarios. Set ρ ≡ 2.

The construction of a WR-BR-WR example is still possible when trading is allowed
in continuous time instead of being restricted to three trading instances. In order to
show this analytically, we take again a simple binomial model with Ω = {ωA, ωB}
and P[{ωA}] = 1

2
. The process K stays constant on [t0, t1) and on [t1, T ] as illustrated

in Figure 2.7. This situation might correspond to an announcement at t1, which can
make the liquidity jump up or down. As in Proposition 2.2.12, one can show the
existence of an optimal strategy, since Ω is countable.

We show in Lemma 2.5.2 that for D0 = 0, it is optimal not to trade on [0, t1). That is
WR-BR structure could only hold if WRt(κ0) = [0,∞) on [0, t1). But it turns out in
Lemma 2.5.3 that there exists t ∈ [0, t1) such that 2 ∈ Brt(κ0). Hence, we cannot have
WR-BR structure. For the proofs of these lemmata, it is not clear how to explicitly
compute the value function at t0. Therefore, we exploit the constant K case from
Proposition 2.2.3 to fully specify the value function at t1. This way, it is possible to
find helpful lower and upper bounds of the value function at t0.

Lemma 2.5.2. For the model stated in Figure 2.7 and all x ∈ [0,∞),

U (t0, 0, x, κ0) = Et0 [U (t1, 0, x,Kt1)] .

Proof. The optimal strategy must consist of purchasing x̃ ∈ [0, x] shares on [0, t1) and
the remaining order on [t1, T ]. When we look at each time interval separately and
imagine that the trading strategy on [0, t1) would contain a discrete trade at t1, it
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must be optimal to apply the constant K optimal strategy and value function Ū as
given in Proposition 2.2.3 on each interval. Then Dt1 ≥ κ0x̃e

−ρt1 and accordingly

U (t0, 0, x, κ0) ≥ min
x̃∈[0,x]

Ū (T − t1, 0, x̃, κ0) + Et0

[
U
(
t1, κ0x̃e

−ρt1 , x− x̃, Kt1

)]

= min
x̃∈[0,x]

κ0x̃
2

ρt1 + 2
+

1

2

[
Ū
(
t1, κ0x̃e

−ρt1 , x− x̃, κA
)
+ Ū

(
t1, κ0x̃e

−ρt1 , x− x̃, κB
)]
.

For various x ∈ [0,∞), we can plot this term as a function of x̃. It turns out that it is
minimal for x̃ = 0. For x = 1, this is exemplarily shown on the left in Figure 2.8.
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Figure 2.8: Lemma 2.5.2: Cost dependence on x̃ for the binomial model and x = 1.
Lemma 2.5.3: Cost dependence on ξ for the binomial model and δ = 1, x = 2. The dashed
line displays the expected optimal costs when there is no trading on [0, t1).

Lemma 2.5.3. For the model stated in Figure 2.7, there exists t ∈ [0, t1) such that

2 ∈ Brt(κ0).

Proof. We need to show that the value function is strictly smaller than the expected
optimal costs when there is no trading on [0, t1), i.e.,

U (t0, 1, 2, κ0) < Et0

[
U
(
t1, e

−ρt1 , 2, Kt1

)]
. (2.44)

Define Θ(ξ) via ∆Θ0(ξ) = ξ, dΘs(ξ) = ρ
κ0
(1 + κ0ξ)ds with ξ ≤ 2κ0−ρ

κ0(1+ρ)
≈ 0.35.

Then Θ(ξ) ∈ A0(2) and the corresponding D stays constant on (0, t1). Consequently,

U (t0, 1, 2, κ0) ≤ min
ξ

(
1 +

κ0
2
ξ
)
ξ +

∫ t1

0

(1 + κ0ξ) dΘs(ξ)

+ Et0

[
U

(
t1, 1 + κ0ξ, 2− ξ −

∫ t1

0

dΘs(ξ), Kt1

)]
.

As in the proof of Lemma 2.5.2, we can state the expectation in terms of Ū from
Proposition 2.2.3 and plot the entire term as a function of ξ. As desired, it turns out
that there exists ξ∗ ∈ [0, 0.35] such that the corresponding costs are strictly lower than
the expected optimal costs when there is no trading on [0, t1). See the right-hand side
of Figure 2.8.
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Remark 2.5.4. As mentioned in Subsection 2.2.1, the optimal deviation process for
constant K is constant in time. This leads to the choice of the strategy Θ(ξ) in
Lemma 2.5.3 and the fact that the corresponding costs are close enough to the value
function. Also notice that the two lines on the right-hand side of Figure 2.8 are not
equal for ξ = 0, since dΘs(0) =

ρ
κ0
ds is strictly positive. The costs for ξ = 0 are slightly

smaller than not trading on [0, t1).

We have now shown the existence of a WR-BR-WR example in continuous time for
a specific choice of κ0 in the binomial model. There exists t ∈ [0, t1) such that the
barrier from wait to buy region lies in (0, 2) and the barrier from buy to wait region
in (2,∞). But we neither know t, nor the exact values of the barriers. Taking t1 ց t0,
we get a model where trading is allowed for the impact coefficient κ0 at t0 and K
immediately jumps to either κA or κB afterwards. It then becomes quite easy to
numerically calculate the two barriers for different values of κ0. As in Section 2.5.1,
this leads to a wedge-shaped buy region at t0. In particular, it is optimal not to trade
for large values of κ0 irrespective of the choice of x.

Ideally, one would like to know if a WR-BR-WR example in continuous time can also
exist for more realistic K like the CIR process. Although we are not able to show
WR-BR structure in full generality for the CIR process, we have not found such an
example using our numerical scheme.



Chapter 3

Numerical scheme

The previous chapter analytically investigated the structure of solutions to our optimal
execution problem. Let us now numerically compute the shape of the buy and wait
region, the value function and corresponding optimal strategies. To do so, we follow
the well-established Markov chain approximation method introduced by Kushner and
his co-authors. An introduction to the method is given in Kushner and Dupuis (2001).
For our problem, this yields a numerical scheme which is investigated in this chapter.
The convergence proof for our scheme is closely related to Kushner and Martins (1991)
and Budhiraja and Ross (2007). Similar to Davis and Norman (1990), but with general
continuous utility functions, the paper of Budhiraja and Ross (2007) deals with the
problem of optimal consumption and portfolio selection with proportional transaction
costs, where an investor maximizes his expected discounted utility of consumption.

The HJB equation for our singular control problem is not elliptic. Moreover, as a
variational inequality it is highly non-linear. To the best of our knowledge, there is
no systematic approach that treats numerical schemes for these variational inequalities
in several dimensions directly. Therefore, we use Kushner’s method as an alternative
to a verification argument. Instead of the HJB equation, the control problem itself is
approximated. In other words, the value function is approximated on a grid and the
state space dynamics are replaced by transition probabilities between the grid points.
Thereby a finite difference scheme of the HJB equation can be used as guidance how to
choose these transition probabilities consistently with the original state dynamics. In
the following, we are going to show that this approximated value function converges to
the original one as the grid size decreases to zero. The proof is by probabilistic methods
only, and it turns out that the positivity of the transition probabilities, see (3.8), is
the only assumption for the convergence result. The essential steps in the proof are to
truncate the state space and to use tightness results. Due to our control problem being
singular, it is necessary to do a time rescaling. Although the HJB equation is not used
in the proof at all, we see in Section 3.2.2 that the numerical scheme resulting from
the Markov chain method is equivalent to the implementation of the HJB equation by
a finite difference scheme.

83
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There are some peculiarities that make our problem more complicated than in Kushner
and Martins (1991) and Budhiraja and Ross (2007). Therefore, it is a priori not clear
if the Markov chain numerical scheme also converges in our case. In particular, we
cannot just replace parts of the proof from the two mentioned papers. Instead, we
have to set up the entire convergence proof with suitable adaptions for our problem.

Specifically, both papers analyze an infinite horizon singular control problem with two-
dimensional state space and the control effects the state space dynamics always in the
direction of two fixed vectors. By contrast, our problem has a finite time horizon, a
three-dimensional state space, and most notably the control direction depends on K,
i.e., it is state space dependent. This is for example relevant when we introduce the
notion of simple strategies in Definition 3.1.18. Moreover, our cost structure is qualita-
tively different, since the costs contain an integral with respect to the control with the
integrand being state space and control dependent. This, e.g., complicates the state
space truncation, since the mentioned integrand is unbounded. At some places, we
thus decide not to follow the methods presented in Kushner and Martins (1991) and
Budhiraja and Ross (2007), but utilize the specific features of our optimal execution
problem. The proof of Lemma 3.1.15 is an example for this.

3.1 Markov chain method

We start by giving an equivalent, but slightly reformulated version of our singular
control problem. This is necessary in order to make the representation of our problem
more similar to the one given in Budhiraja and Ross (2007). As before, Θ denotes the
control, but instead of At(x) we consider the control set

Ãt :=
{
Θ ∈ At

∣∣ΘT = ΘT+

}

and incorporate the final jump trade in the cost functional (see below). Let Assumption
HomogDiff hold. We typically think of a GBM or CIR process, which both satisfy this
assumption. We exclude time-dependent drift and volatility here in order to get a
time-homogeneous Markov chain approximation. This makes the convergence proof
notationally simpler, although it should still work for time-inhomogeneous diffusions.
For Θ ∈ Ãt, let us recapitulate the state space dynamics

dDs = −ρsDsds+KsdΘs,

dXs = −dΘs,

dKs = µ(Ks)ds+ σ(Ks)dW
K
s .

Due to Assumption HomogDiff, K is non-negative. Set Zs := (Ds, Xs, Ks) ∈ [0,∞)×
(−∞,∞) × [0,∞) for s ∈ [t, T ] and Zt := z := (δ, x, κ) ∈ [0,∞)3 as initial condi-
tion. (This three-dimensional z should not be mixed up with z = κx

δ
as introduced in

Table 1.1.) Define the stopping time

τt := inf {s ≥ t|Xs ≤ 0} ∧ T.
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It indicates the time when all shares are bought. Introduce the costs

J(t, z,Θ) := Et,z

[∫

[t,τt)

α (Zs,△Θs) dΘs + g(Zτt)

]

α(z, ϑ) := δ +
κ

2
ϑ, g(z) :=

(
δ +

κ

2
x
)
x

Slightly abusing notation, our value function can be expressed as

U(t, z) = inf
Θ∈At(x)

J(t, δ,Θ, κ) = inf
Θ∈Ãt

J(t, z,Θ).

That is compared to the original formulation, we replace the constraint ΘT+ = x by
the stopping time τt and the additional cost term g. Notice that the two corresponding
functions J are notationally only differentiated by the number of input parameters.

3.1.1 State space truncation

x

d

k

R1

R2

G
l

l

l

l

Figure 3.1: Illustration of the state space truncation using reflection.

In order to solve the control problem numerically, we need to restrain the state space
process Z to some bounded set G. One can either work with absorbing or reflecting
boundaries of G. We choose the second alternative and introduce a box G which has
some reflecting boundaries. Proposition 3.1.1 then proves that the truncated value
function converges to the original one when enlarging the box. This result holds irre-
spective of the numerical scheme that we choose to approximate the value function.

For l ∈ R>0, define the box

Gl := [0, l]× (−∞, l]× [0, l].

The aim is to find a minimal reflection process such that Z stays in this box as illus-
trated in Figure 3.1. Since X is decreasing for Θ ∈ Ãt and the processes D,K stay
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positive, we only need to bound D,K from above. Thus, for s ∈ [t, T ] we are looking
for modified state dynamics

Zl(s) = (Dl(s), Xl(s), Kl(s)) ∈ Gl

dDl(s) = −ρsDl(s)ds+Kl(s)dΘs − dR1(s), (3.1)

dXl(s) = −dΘs,

dKl(s) = µ (Kl(s)) ds+ σ (Kl(s)) dW
K
s − dR2(s)

with Zl(t) = z = (δ, x, κ) ∈ [0, l]3. More precisely, the reflection proces R = (R1, 0, R2)
should be componentwise nondecreasing, adapted and càglàd such that

∫

[t,∞)

I{Dl(s+)<l}dR1(s) =

∫

[t,∞)

I{Kl(s+)<l}dR2(s) = 0.

According to Dupuis and Ishii (1991), this Skorokhod problem with normal reflection
has a unique solution and the associated Skorokhod map is Lipschitz continuous with
respect to the supremum norm. Therefore, the state space truncated control problem is
well defined:

Ul(t, z) := inf
Θ∈Ãt

Jl(t, z,Θ),

Jl(t, z,Θ) := Et,z

[∫

[t,τ lt )

α (Zl(s),△Θs) dΘs + g
(
Zl(τ

l
t )
)
]
,

τ lt := inf {s ≥ t|Xl(s) ≤ 0} ∧ T. (3.2)

The only difference between the stopping times τt and τ lt is that Xl(t) needs to be
smaller than l. Let us now show that Ul converges to U .

Proposition 3.1.1. (Convergence of state space truncation).
The function Ul converges locally uniformly to U on [0, T ]× [0,∞)3 as l → ∞.

Proof. Let G ⊂ [0,∞)3 be compact. The aim is to prove that for each δ̃ > 0, there
exists l0 > 0 such that for all l > l0 and (t, z) ∈ [0, T ]×G

|Ul(t, z)− U(t, z)| ≤ δ̃.

We start by showing that for all l > l0(δ̃) > l̂0 := max{δ ∨ x ∨ κ|(δ, x, κ) ∈ G},

Ul(t, z) ≤ U(t, z) + δ̃. (3.3)

Here, we still have to choose l0(δ̃) independent of (t, z). Changing the roles of Ul and U
in the following argument, we analogously get

U(t, z) ≤ Ul(t, z) + δ̃. (3.4)

The assertion then follows from (3.3) and (3.4).
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Let us prove (3.3). For ǫ > 0, there exists an ǫ-optimal strategy Θǫ
t,z ∈ Ãt such that

J(t, z,Θǫ) ≤ U(t, z) + ǫ. (3.5)

For this strategy, define the events

At,ǫ
l,l0

:=

{
ω ∈ Ω

∣∣∣∣∣ sup
s∈[t,τ lt)

[Dǫ
l (s) +Kl(s)] ≥ l0

}
.

For notational convenience, the dependence on z of this set and the involved process
is not made precise, since this is not crucial in the sequel. Consider At,ǫ

l,l0
and its

complement separately to get the estimate

Ul(t, z) ≤ Jl(t, z,Θ
ǫ) = Et,z

[
I(At,ǫ

l,l0
)
c

{∫

[t,τ lt )

α (Zǫ
l (s),△Θǫ

s) dΘ
ǫ
s + g

(
Zǫ

l (τ
l
t )
)
}]

+ Et,z

[
IAt,ǫ

l,l0

{∫

[t,τ lt)

α (Zǫ
l (s),△Θǫ

s) dΘ
ǫ
s + g

(
Zǫ

l (τ
l
t )
)
}]

≤ J(t, z,Θǫ) + δ̃. (3.6)

Indeed, the first expectation in (3.6) is dominated by J(t, z,Θǫ), since Zǫ
l and Zǫ

coincide on
(
At,ǫ

l,l0

)c
. It only remains to show that the second expectation in (3.6) is

dominated by δ̃. From (3.5) and (3.6), (3.3) follows by choosing ǫ small enough.

Define
K̂ := sup

s∈[0,T ]

K(s).

We can always trade everything at once and so the costs are pathwise bounded by

[(
l̂0 + K̂l̂0

)
+
K̂

2
l̂0

]
l̂0 = l̂20

(
1 +

3

2
K̂

)
.

Hence,

Et,z

[
IAt,ǫ

l,l0

{∫

[t,τ lt )

α (Zǫ
l (s),△Θǫ

s) dΘ
ǫ
s + g(Zǫ

l (τ
l
t ))

}]

≤ l̂20

(
P0,z

[
A0,ǫ

l,l0

]
+

3

2
E0,z

[
K̂IA0,ǫ

l,l0

])
.

Due to the definition of l̂0 and K̂, we have Dǫ
l (s) +Kl(s) ≤ (l̂0 + K̂l̂0) + K̂. Applying

this inequality and afterwards Markov’s inequality yields

P0,z

[
A0,ǫ

l,l0

]
≤ P0,z

[(
l̂0 + K̂l̂0

)
+ K̂ ≥ l0

]
≤
l̂0 + (1 + l̂0)E0,z

[
K̂
]

l0
.
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Thanks to Assumption HomogDiff, E0,z[K̂] is uniformly bounded for z ∈ G and thus
the probability under consideration gets uniformly small the higher we choose l0. Due
to Lebesgue’s dominated convergence theorem with majorant K̂, the same is true for
the expectation of K̂IA0,ǫ

l,l0

.

Remark 3.1.2. (Comparison to Budhiraja and Ross (2007)).
Because of our cost structure with unboundedK, our proof of the state space truncation
is more involved than in the case of Budhiraja and Ross (2007). We do not need to
consider the control space truncation and the state space truncation separately, since
our control is bounded anyway as soon as we truncate the state space. That is it follows
from Xl(s) ∈ [0, l] for all s ∈ [t, τ lt ∧ T ) that △Θs,Θs ∈ [0, l]. Therefore, we do not
have to assume the value function to be continuous, which is needed in Budhiraja and
Ross (2007) to prove the convergence of the control space truncation.
Kushner and Martins (1991) directly consider a truncated optimization problem and
do not analyze the truncation itself.

3.1.2 The Markov chain approximation

Thanks to the state space truncation result, we can fix l ∈ R≥0 and focus on the
computation of Ul on [0, T ]×Gl. For ease of notation, we thus drop the subscript l in the
sequel and write Z, J, U, τt instead of Zl, Jl, Ul, τ

l
t . Let us introduce a three-dimensional

h-grid on Gl and approximate the values of U at the grid points by a function Uh.
The idea is to approximate the state dynamics (3.1) by a controlled Markov chain
to derive Uh. This subsection describes this procedure in detail and introduces the
necessary concepts. Afterwards, we go ahead by preparing the convergence proof of
the value functions, which is the main result of this chapter. Finally, we explain and
implement the numerical scheme that results from the Markov chain approximation.

Without loss of generality, choose l ≥ 1. For h > 0 such that l is an integer multiple
of h, take a rectangular grid

Lh :=
{
h(i, j, k)

∣∣i, j, k ∈ N
}
.

Define the state space grid for the Markov chain as Gh
l := Gl ∩ Lh. To conveniently

specify the reflection, we consider the slightly larger state space

Gh+
l := Gl+h ∩ Lh.

Here, we introduce the reflection and constraint boundaries

∂hR :=
{
z ∈ Gh+

l

∣∣δ = l + h or κ = l + h
}
,

∂h :=
{
z ∈ Gh+

l

∣∣x = 0
}
,

∂0 :=
{
z ∈ Gl

∣∣x = 0
}
.
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In the following, we will specify transition probabilities to get a controlled Markov
chain (

Zh
n

)
n∈N with values in Gh+

l .

Let (Ihn)n∈N, I
h
n ∈ {0, 1, 2} be the sequence of control actions. Zero corresponds to

waiting (diffusion step), one corresponds to trading (control step) and two to a reflection
step (see below). For a given control Ih and E ⊂ Gh+

l , we define the probabilistic
dynamics of Zh via

Zh
0 := zh ∈ Gh+

l , P
[
Zh

n+1 ∈ E
∣∣Fh

n

]
:= ph

(
Zh

n , I
h
n , E

)
,

where Fh
n := σ

(
Zh

0 , ..., Z
h
n , I

h
0 , ..., I

h
n

)
and

ph(z, i, z) = 1 for z ∈ ∂h and ph(z, i, z′) := qh(i)(z, z
′) for z /∈ ∂h

with transition probabilities qh(0), q
h
(1), q

h
(2) : G

h+
l \∂h → Gh+

l to be defined below.

Definition 3.1.3. (Admissible control sequence).
A control sequence Ih is called admissible for the initial value zh ∈ Gh+

l if Ihn
is σ

(
Zh

0 , ..., Z
h
n , I

h
0 , ..., I

h
n−1

)
measurable and for all n ∈ N

P
[
Ihn = 2

∣∣Zh
n ∈ Gh

l

]
= 0, P

[
Ihn = 2

∣∣Zh
n ∈ ∂hR\∂h

]
= 1.

The set of all these admissible controls is called Ah(zh).

Using the concept of admissible controls, we can introduce Uh : [0, T ]×Gh
l → R by

Uh(t, zh) := inf
Ih∈Ah(zh)

Jh
(
t, zh, Ih

)
,

Jh
(
t, zh, Ih

)
:= E

[
ηht −1∑

n=0

(
Dh

n +
Kh

n

2

h

Kh
n ∨ 1

)
h

Kh
n ∨ 1

I{Ihn=1}

+

(
Dh

ηht
+
Kh

ηht

2
Xh

ηht

)
Xh

ηht

]
, (3.7)

ηht := inf
{
n ∈ N

∣∣Zh
n ∈ ∂h or thn ≥ T − t

}
,

τht := t+ thηht
.

The time instances (thn)n∈N depend on the control

th0 := 0, thn :=
n−1∑

j=0

△h
j , △h

n := △h
(
Zh

n , I
h
n

)
:= △̃h(Zh

n)I{Ihn=0}.

We specify the diffusion time interval △̃h(z) below. Intuitively speaking, n counts the
number of control actions, but time only elapses in case of a diffusion step. For n
corresponding to a control or reflection step, thn+1 = thn. Let us agree on the convention
that without loss of generality Ihn 6= 1 for n ≥ ηht , i.e. there is no control after τht .
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Let us next state the transition probabilities qh(i). They are closely related to the differ-
ence quotients appearing in a finite difference scheme for the HJB variational inequality
from Section 3.2.2. Notice though that the convergence proof for the Markov chain
approach does not use the HJB equation directly, but only takes it as an orientation
how to sensibly choose the transition probabilities.

Diffusion step: Choice of qh(0)

( -h, )d k ( , )d k

( , +h)d k

( , -h)d k

Figure 3.2: Diffusion directions.

In a diffusion step, D decreases due to resilience and K diffuses according to its SDE.
For all z = (δ, x, κ) ∈ Gh

l \∂h, define the diffusion transition probabilities

qh(0) (z, (δ − h, x, κ)) := ρδ
△̃h(z)

h
≥ 0,

qh(0) (z, (δ, x, κ− h)) :=
σ2(κ)

2

△̃h(z)

h2
+ µ(κ)−

△̃h(z)

h
≥ 0,

qh(0) (z, (δ, x, κ + h)) :=
σ2(κ)

2

△̃h(z)

h2
+ µ(κ)+

△̃h(z)

h
≥ 0,

qh(0)(z, z) := 1− ρδ
△̃h(z)

h
− σ2(κ)

△̃h(z)

h2
− |µ(κ)| △̃

h(z)

h
.

For all other z′ ∈ Lh, set qh(0) (z, z
′) := 0. For a given state z, Figure 3.2 outlines the

neighboring points with positive transition probability. The self-transition probabil-
ity qh(0)(z, z) should be non-negative, which then implies qh(0)(z, z

′) ≤ 1. Therefore, we

need to choose the diffusion time step △̃h(z) > 0 small enough compared to the space
step. More precisely, we take

△̃h(z) ≤ h

(
ρδ +

σ2(κ)

h
+ |µ(κ)|

)−1

=
h2

ρδh+ σ2(κ) + |µ(κ)|h. (3.8)

In particular, limh→0 △̃h(z) = 0 for all z. Due to the local boundedness of µ and σ
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under Assumption HomogDiff, we can find a constant dth independent of z such that

△̃h(z) := dth ≤ h

(
ρδ +

σ2(κ)

h
+ |µ(κ)|

)−1

.

Remark 3.1.4. (Choice of the time step).
For the time-homogeneous GBM, a feasible choice of △̃h(z) is

△̃h(z) ≡ h

(
ρl +

σ̄2l2

h
+ µ̄l

)−1

=: dthGBM .

For the CIR process, we analogously get

△̃h(z) ≡ h

l

(
ρ+

σ̄2

h
+ µ̄

)−1

=: dthCIR. (3.9)

For later use, we show that the diffusion step of the Markov chain is consistent with
the continuous state dynamics (3.1). The corresponding Lemma 3.1.5 is the result of
a straightforward calculation. It deals with the expectation and variance of Zh

n+1 −Zh
n

when Ihn = 0. Define the expectation and variance terms

m0(z) :=
∑

z′∈Lh

(z′ − z)qh(0)(z, z
′),

σ0(z) :=
∑

z′∈Lh

(z′ − z −m0(z))
′
(z′ − z −m0(z)) q

h
(0)(z, z

′).

Lemma 3.1.5. (Diffusion consistency conditions).
We get that

m0(z) = △̃h(z) (−ρδ, 0, µ (κ)) ,

σ0(z) = △̃h(z)




ρδ
(
h− ρδ△̃h(z)

)
0 ρδ△̃h(z)µ(κ)

0 0 0

ρδ△̃h(z)µ(κ) 0 σ2(k)− µ2(κ)△̃h(z)




= △̃h(z)




0 0 0
0 0 0
0 0 σ2(k)



 + △̃h(z)O (hp) for some p > 0.

�

Singular control step: Choice of qh(1)

In a singular control step, we follow the vector (κ,−1, 0) times the number of shares
that we trade. That is D increases and X decreases. In case of our Markov chain
approximation, we buy a small amount of shares which is O(h). As illustrated in Fig-
ure 3.3, the neighboring grid points might not lie along the vector (κ,−1, 0). Therefore,
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( ,x)d

( ,x-h)d
( +h,x-h)d

( ,-1)k

h( ,-1)k

kh (1- )hk

( ,x)d ( +h,x)d

( +h,x-h)d

h/ ( ,-1)k k

h/k

(1-1/ )hk

( ,-1)k

Figure 3.3: Control directions for κ < 1 (left) and κ ≥ 1 (right).

we choose qh(1) such that we follow this vector at least on average. This is verified in

Lemma 3.1.6. For all z = (δ, x, κ) ∈ Gh
l \∂h, we thus define the control transition

probabilities

qh(1) (z, (δ, x− h, κ)) := (1− κ) ∨ 0 ∈ [0, 1],

qh(1) (z, (δ + h, x− h, κ)) := κ ∧ 1

κ
∈ [0, 1],

qh(1) (z, (δ + h, x, κ)) := 0 ∨
(
1− 1

κ

)
∈ [0, 1]

qh(1) (z, z
′) := 0 for all other z′ ∈ Lh.

In contrast to our specification, the control transition probabilities in Kushner and
Martins (1991) and Budhiraja and Ross (2007) are constants.

Define the expectation and variance terms of Zh
n+1 − Zh

n resulting from a control step

m1(z) :=
∑

z′∈Lh

(z′ − z)qh(1)(z, z
′),

σ1(z) :=
∑

z′∈Lh

(z′ − z −m1(z))
′
(z′ − z −m1(z)) q

h
(1)(z, z

′).

Lemma 3.1.6. (Control consistency conditions).
We get that

m1(z) = h

{
(κ,−1, 0) if κ ≤ 1
(1,− 1

κ
, 0) otherwise

}
=

h

κ ∨ 1
(κ,−1, 0) ,

σ1(z) = h2









κ(1− κ) 0 0
0 0 0
0 0 0


 if κ ≤ 1




0 0 0
0 κ−1

κ2 0
0 0 0



 otherwise






= O(h2).

�
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Normal reflection step: Choice of qh(2)

k

d

l+h

l

l+hl0

Figure 3.4: Reflection directions.

Starting in Gh
l , the only possibilities that our Markov chain reaches ∂hR is by diffusion

when K gets larger than l or by control when D gets larger than l. For z ∈ ∂hR, we do
a normal reflection as illustrated in Figure 3.4:

qh(2) ((δ, x, l + h) , (δ, x, l)) := 1,

qh(2) ((l + h, x, κ) , (l, x, κ)) := 1,

qh(2) (z, z
′) := 0 for all other z, z′ ∈ Lh.

3.1.3 Continuous time interpolation

For notational convenience, we set without loss of generality t = 0. Some more nota-
tion is needed in order to translate the discrete time, discrete state Markov decision
problem from the preceding subsection into a continuous time formulation, where the
approximating processes are constant on each of the intervals (thn, t

h
n+1].

The (Fh
n) stopping time

nh(s) := max{n ∈ N|thn < s}
is key for the continuous time interpolation. Set Fh(s) := Fh

nh(s) for s ∈ [0, T ]. In

the same manner, we can interpret Ih(s) := Ih
nh(s)

and Zh(s) := Zh
nh(s)

with Zh =

(Dh, Xh, Kh) as continuous time processes. Set △Zh
n := Zh

n+1 − Zh
n and define the

controlled Markov chain’s

• drift part of the diffusion

Bh
n :=

n−1∑

k=0

E
[
△Zh

k

∣∣Fh
k

]
I{Ihk=0},
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• martingale part of the diffusion

Sh
n :=

n−1∑

k=0

(
△Zh

k − E
[
△Zh

k

∣∣Fh
k

])
I{Ihk=0}, (3.10)

• proxy for the strategy

Θh
n :=

n−1∑

k=0

h

Kh
k ∨ 1

I{Ihk=1},

• martingale part corresponding to singular control

Eh
n :=

n−1∑

k=0

(
△Zh

k − h

Kh
k ∨ 1

(
Kh

k ,−1, 0
))

I{Ihk=1}

• and reflection part

Rh
n := −

n−1∑

k=0

△Zh
k I{Ihk=2}.

The corresponding continuous time processes start at zero and are left-continuous step
functions defined as

Bh(s) := Bh
nh(s), S

h(s) := Sh
nh(s),Θ

h(s) := Θh
nh(s), E

h(s) := Eh
nh(s), R

h(s) := Rh
nh(s).

The above interpretation of these processes is made precise by the next lemma.

Lemma 3.1.7. We get that

Zh(s) = zh +Bh(s) + Sh(s) +

∫

[0,s)

(
Kh(r),−1, 0

)
dΘh(r) + Eh(s)− Rh(s),

Bh(s) =

∫

[0,s)

(
−ρDh(r), 0, µ

(
Kh (r)

))
dr for s ∈ [0,∞).

3.1.4 Time rescaling

For the convergence result, we need weakly convergent subsequences of the processes
introduced in the last section when h → 0. Thanks to Prokhorov’s Theorem, this
can be obtained by showing tightness. But due to the singular control nature of our
problem, it is difficult to get this tightness directly. Therefore, we need the idea by
Kushner to stretch out time: In each control instance, we artificially expand the time
by the size of the trade and thus transform singular to classical control processes. In
the next subsection, we can then prove tightness for the stretched out processes using
the Aldous-Kurtz criterion. This time rescaling is later being undone to obtain the
convergence result.
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Figure 3.5: This example illustrates the continuous time interpolation and time rescaling.
For simplicity, assume Kn ≤ 1 for all n. We have a given deterministic control sequence
(Ihn)n=0,...,9 = (1, 1, 1, 0, 1, 1, 0, 0, 1, 0). Then (Θh

n)n=0,...,10 = h(0, 1, 2, 3, 3, 4, 5, 5, 5, 6, 6) and
(thn)n=0,...,10 = dth(0, 0, 0, 0, 1, 1, 1, 2, 3, 3, 4). The plot of Θ̂h also contains Θh ◦ T̂ h as a dashed
line. They differ on (t̂h1 , t̂

h
3 ] ∪ (t̂h5 , t̂

h
6 ], i.e. when more than one control step is done in a row.
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Definition 3.1.8. (Rescaled time process).
Define the rescaled time grid t̂h0 := 0, t̂hn :=

∑n−1
j=0 △̂h

j with time intervals

△̂h
n :=





△h
n for Ihn = 0

h
Kh

n∨1 for Ihn = 1

0 for Ihn = 2



 .

The rescaled time process T̂ h is the unique continuous, nondecreasing process that
satisfies T̂ h(0) = 0 and for s ∈ (t̂hn, t̂

h
n+1)

∂

∂s
T̂ h(s) =

{
1 for Ihn = 0
0 for Ihn = 1, 2

}
.

From this definition, it follows that T̂ h
(
t̂hn
)
= thn and T̂ h

(
t̂hn+1

)
− T̂ h

(
t̂hn
)
= △h

n.
The (Fh

n)-stopping time n̂h(s) is defined as

n̂h(s) := max
{
n ∈ N|t̂hn < s

}
≤ 2

(⌈
s

minz∈Gh
l
△̃h(z)

⌉
+

⌈
s
h
l

⌉)
, (3.11)

where the multiplier two is due to reflection, the first summand counts the maximum
number of diffusion steps and the second summand the maximum number of control
steps. Let F̂h(s) := Fh

n̂h(s) and introduce the rescaled process

Îh(s) := Ihn̂h(s).

Define Ẑh, B̂h, Ŝh, Θ̂h, Êh, R̂h analogously.

Remark 3.1.9. Notice that n̂h and nh ◦ T̂ h are different. It is a slight error in Budhiraja
and Ross (2007) that these processes are taken to be equal. Thus, Îh 6= Ih ◦ T̂ h. This
difference is illustrated for Θ̂h and Θh ◦ T̂ h in Figure 3.5.

The following lemma contains

τ̂h0 := inf
{
s ∈ [0,∞)

∣∣Ẑh(s) ∈ ∂h or T̂ h(s) ≥ T
}
.

Lemma 3.1.10. We get that

Ẑh(s) = zh + B̂h(s) + Ŝh(s) +

∫

[0,s)

(
K̂h(r),−1, 0

)
dΘ̂h(r) + Êh(s)− R̂h(s),

B̂h(s) =

∫

[0,s)

(
−ρD̂h(r), 0, µ

(
K̂h(r)

))
dT̂ h(r) for s ∈ [0,∞) and

Jh(0, zh, Ih) = E

[∫

[0,τ̂h0 )

(
D̂h(s) +

K̂h(s)

2
△Θ̂h(s)

)
dΘ̂h(s)

+

(
D̂h(τ̂h0 ) +

K̂h(τ̂h0 )

2
X̂h(τ̂h0 )

)
X̂h(τ̂h0 )

]
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Proof. The first two equations follow analogously to Lemma 3.1.7. In the expectation of
the third equation, plug in the definition of the time rescaled processes and n̂h(τ̂h0 ) = ηh0

E

[∫

[0,τ̂h0 )

(
Dh

n̂h(s) +
Kh

n̂h(s)

2
△Θh

n̂h(s)

)
dΘh

n̂h(s) +

(
Dh

ηh0
+
Kh

ηh0

2
Xh

ηh0

)
Xh

ηh0

]

= E



ηh0−1∑

n=0

(
Dh

n +
Kh

n

2

h

Kh
n ∨ 1

)
h

Kh
n ∨ 1

I{Ihn=1} +

(
Dh

ηh0
+
Kh

ηh0

2
Xh

ηh0

)
Xh

ηh0


 .

This term equals the definition of Jh(0, zh, Ih) from (3.7).

3.1.5 Convergence and tightness of the rescaled processes

First of all, we show that the process Êh converges to zero in probability as h → 0.
Therefore, we do not need to consider it in the following tightness result Lemma 3.1.12.
The idea of the proofs is again taken from Budhiraja and Ross (2007).

Lemma 3.1.11. As h → 0, Êh converges to zero in probability in D ([0,∞) : R3),
which is the space of càglàd functions endowed with the Skorokhod topology.

Proof. Due to the control consistency condition in Lemma 3.1.6, (Eh
n)n∈N must be a

discrete (Fh
n)-martingale. Since n̂h(s) from (3.11) is bounded, we can apply Doob’s

Optional-Sampling Theorem in order to get for 0 ≤ r ≤ s that

E

[
Êh(s)

∣∣∣F̂h(r)
]
= E

[
Eh

n̂h(s)

∣∣∣Fh
n̂h(r)

]
= Eh

n̂h(r) = Êh(r).

That is the Burkholder-Davis-Gundy inequality can be applied to (Êh
s ):

E

[
sup
r∈[0,s]

∣∣∣Êh(r)
∣∣∣
]2

≤ constE

[〈
Êh
〉 1

2

s

]2
≤ constE

[〈
Êh
〉

s

]
≤
⌈
sl

h

⌉
O
(
h2
) h→0→ 0.

(3.12)
We also used Jensen’s inequality and control consistency from Lemma 3.1.6.

Lemma 3.1.12. (Tightness).

The laws of
{(
Ĥh, τ̂h0

)
, h > 0

}
with Ĥh :=

(
Ẑh, T̂ h, Θ̂h, R̂h, B̂h, Ŝh

)
form a tight

family of distributions on
D
(
[0,∞) : R14

)
× [0,∞] .

Proof. In order to prove tightness of a family of distributions belonging to some pro-
cesses, we use the Aldous-Kurtz criterion as in Kurtz (1981), Theorem 2.7 b. It says
that for each component φh of Ĥh, we need to check that for all M > 0

lim
s→0

lim sup
h→0

sup
τ≤M

E
[
1 ∧

∣∣φh(τ + s)− φh(τ)
∣∣] = 0.
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Thus {T̂ h} is tight, since T̂ h(τ + s)− T̂ h(τ) ≤ s. Due to our stretching out of the time,

Θ̂h(τ + s)− Θ̂h(τ) ≤ s+ h. (3.13)

This yields the tightness for the control process. The tightness of {B̂h} is also immedi-
ate with Lemma 3.1.10, D̂h, K̂h, µ(·) being bounded and T̂ h being Lipschitz continuous.
We still have to deal with {Ŝh}. Similar to the proof of Lemma 3.1.11, one can show
that Ŝh is a martingale and similar to (3.12)

(
E

[∣∣∣Ŝh(τ + s)− Ŝh(τ)
∣∣∣
])2

≤ constE

[
Trace

(〈
Ŝh
〉

τ+s
−
〈
Ŝh
〉

τ

)]
. (3.14)

A detailed calculation in the proof of Lemma 3.1.13 below shows

〈
Ŝh
〉

s
=




0 0 0
0 0 0
0 0 1




n̂h(s)−1∑

k=0

σ2
(
Kh

k

)
△̃h
(
Zh

k

)
I{Ihk=0} (3.15)

+

n̂h(s)−1∑

k=0

△̃h
(
Zh

k

)
O (hp) I{Ihk=0}

for the same p > 0 as in Lemma 3.1.5. We see from (3.14) and (3.15) that the Aldous-
Kurtz criterion is satisfied, since

n̂h(τ+s)−1∑

k=n̂h(τ)

△̃h
(
Zh

k

)
I{Ihk=0} ≤

∣∣∣T̂ h(τ + s)− T̂ h(τ)
∣∣∣ ≤ s.

It only remains to prove the tightness for the state and reflection processes. Define

Ẑ
h
(s) := zh + B̂h(s) + Ŝh(s) +

∫

[0,s)

(
K̂h(r),−1, 0

)
dΘ̂h(r) + Êh(s). (3.16)

Then Ẑh = Ẑ
h − R̂h thanks to Lemma 3.1.10 and the distribution of Ẑ

h
is tight as

we argued above. Moreover, Ẑh can be expressed as image of Ẑ
h
under the Skorokhod

map. Since the Skorokhod map is Lipschitz continuous, Ẑh satisfies the Aldous-Kurtz
criterion and, as a consequence, the reflection process must be tight, too.

The tightness of
{
τ̂h0
}
follows from [0,∞] being compact.

3.1.6 Properties of the rescaled limit processes

For z0 ∈ Gl, let (z
h) be a sequence with Zh

0 = zh ∈ Gh+
l and limh→0 z

h = z0. Thanks

to the tightness in Lemma 3.1.12, there exists Ĥ = (Ẑ, T̂ , Θ̂, R̂, B̂, Ŝ), τ̂0 and a subse-
quence such that the law of (Ĥh, τ̂h0 ) converges weakly to the law of (Ĥ, τ̂0) as h→ 0:

(
Ĥh, τ̂h0

)
w→
(
Ĥ, τ̂0

)
. (3.17)
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For notational convenience, we still take h to index this weakly convergent subsequence.
Due to the Skorokhod representation, we can without loss of generality assume that all
processes are defined on the same probability space and that we have convergence with
probability one in the space of càglàd functions instead of weak convergence of the
laws. Slightly modifying the corresponding proof in Budhiraja and Ross (2007), we get
that the properties of the elements of the subsequence are preserved in the limit:

Lemma 3.1.13. The limit (Ĥ, τ̂0) satisfies:

1. T̂ is nondecreasing and Lipschitz continuous with coefficient one.

2. B̂(s) =
∫
[0,s)

(
−ρD̂(r), 0, µ(K̂(r))

)
dT̂ (r), s ≥ 0.

3. Ŝ1 = Ŝ2 ≡ 0 a.s. and the third component Ŝ3 is a continuous martingale for the
filtration F̂(s) := σ(Ĥ(r), r ∈ [0, s]). Its quadratic variation is given by

〈
Ŝ3

〉
(s) =

∫

[0,s)

σ2
(
K̂(r)

)
dT̂ (r), s ≥ 0. (3.18)

4. Θ̂ is nondecreasing and continuous.

5. R̂ is componentwise nondecreasing and continuous with

∫

[0,∞)

I{D̂(r+)<l}dR̂1(r) =

∫

[0,∞)

I{K̂(r+)<l}dR̂2(r) = 0. (3.19)

6. Ẑ is continuous, takes values in Gl a.s. and

Ẑ(s) = z0 + B̂(s) + Ŝ(s) +

∫

[0,s)

(
K̂(r),−1, 0

)
dΘ̂(r)− R̂(s), s ≥ 0. (3.20)

Proof. We consider each of the statements separately.

1. The first statement follows directly from the corresponding properties of T̂ h.

2. Consider
∣∣∣∣B̂

h(s)−
∫

[0,s)

(
−ρD̂(r), 0, µ(K̂(r))

)
dT̂ (r)

∣∣∣∣ (3.21)

≤
∫

[0,s)

∣∣∣
(
−ρD̂h(r), 0, µ(K̂h(r))

)
−
(
−ρD̂(r), 0, µ(K̂(r))

)∣∣∣ dT̂ (r)

+

∫

[0,s)

|dT̂ h(r)− dT̂ (r)| sup
r∈[0,s)

∣∣∣
(
−ρ(D̂h(r)− D̂(r)), 0, µ(K̂h(r))− µ(K̂(r))

)∣∣∣

+

∣∣∣∣
∫

[0,s)

(
−ρD̂(r), 0, µ(K̂(r))

)
dT̂ h(r)−

∫

[0,s)

(
−ρD̂(r), 0, µ(K̂(r))

)
dT̂ (r)

∣∣∣∣
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for h → 0. The integrand of the first integral of the right-hand side is bounded
and so we can use Lebesgue’s dominated convergence theorem recalling that µ is
assumed to be continuous. The total variation in the second summand is bounded
by 2s. The convergence with respect to the Skorokhod topology corresponds to
uniform convergence when the limit is continuous. As we see below, D̂ and K̂
are continuous. Therefore, the supremum in the second summand converges to
zero. The integrands in the last summand are identical to each other, continuous
and do not depend on h. Hence, we can use the definition of weak convergence
for measures to conclude that the last summand converges to zero.

Therefore, the entire term (3.21) converges to zero with probability one as h→ 0.

3. This is the main part of this proof. Due to the definition of the diffusion step,

sup
r∈[0,s]

∣∣∣Ŝh(r+)− Ŝh(r)
∣∣∣ ≤ const h.

That is the jumps of Ŝh are O(h) and so Ŝ must be continuous by Ethier and
Kurtz (1986), Theorem 3.10.2. As in the proof of Lemma 3.1.11, we can show
that Ŝh is an F̂h-martingale. Using the diffusion consistency conditions,

〈
Sh
〉
n

=

n−1∑

k=0

E

[(
Sh
k+1 − Sh

k

)′ (
Sh
k+1 − Sh

k

) ∣∣∣Fh
k

]

=




0 0 0
0 0 0
0 0 1




n−1∑

k=0

σ2
(
Kh

k

)
△̃h
(
Zh

k

)
I{Ihk=0}

+




1 0 1
0 0 0
1 0 1




n−1∑

k=0

△̃h
(
Zh

k

)
O (hp) I{Ihk=0}

for p > 0 from Lemma 3.1.5. For 〈Ŝh〉s, we get the same term, but with n
being replaced by n̂h(s) and the second sum being of the order sO(hp). It follows
that Ŝ1 = Ŝ2 ≡ 0 for h→ 0 as desired.

For each fixed s ∈ [0,∞), we show in a moment using the de la Vallée Poussin
Theorem that {(Ŝh

3 (s))
2, h > 0} is uniformly integrable. Therefore, not only

Ŝh
3 and

(
Ŝh
3

)2
−
〈
Ŝh
3

〉
,

but also

Ŝ3 and Ŝ2
3 −

∫

[0,·)
σ2
(
K̂(r)

)
dT̂ (r)

must be martingales. Thus, the uniqueness of the quadratic variation yields (3.18).
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According to the Burkholder-Davis-Gundy inequality,

E

[∣∣∣Ŝh
3 (s)

∣∣∣
4
]
≤ constE

[〈
Ŝh
3

〉2
(s)

]
≤ const

(
sup

κ∈[0,l+h]

σ2(κ) +O(hp)

)2

s2.

That is suph∈(0,1] E[|Ŝh
3 (s)|4] <∞, which yields the uniform integrability.

4. We have nondecreasing Θ̂h and, due to (3.13), Θ̂ cannot have any jumps.

5. Since R̂h is nondecreasing, this also holds for its limit. Because of the Lipschitz
continuity of the Skorokhod map and the continuity of the limit of (3.16), we get
continuity of R̂ as well as (3.19).

6. The statement follows from Lemma 3.1.10 and

P

[
Ẑh(s) ∈ [0, l + h]× [0, l]× [0, l + h]

]
= 1.

3.1.7 Undo time rescaling

Having introduced the time rescaling method in order to prove tightness and the exis-
tence of convergent subsequences, we now translate the resulting limit processes back
to the original time scale by using the left-continuous inverse of T̂ . In this subsection,
we make sure that the properties of the rescaled processes listed in Lemma 3.1.13 are
preserved under this change back to the original time scale. A first step in this direction
is the following lemma. It shows that the left-continuous inverse of T̂ is well-defined.
Its proof can mostly be adopted from Budhiraja and Ross (2007).

Lemma 3.1.14. (Limit of rescaled time process is surjective).

lim
s→∞

T̂ (s) = ∞ a.s.

Proof. Suppose for a contradiction that there exists ǫ > 0, T0 > 1 with

P

[
sup
s≥0

T̂ (s) < T0 − 1

]
> ǫ.

Thus, we get a contradiction by showing that there exists M > 0 with

P

[
T̂ (T0 +M) < T0 − 1

]
= lim inf

h→0
P

[
T̂ h(T0 +M) < T0 − 1

]
≤ ǫ

2
. (3.22)

According to Lemma 3.1.15 below, we can find M > 0 such that for all h ∈ (0, 1]

P
[
Θh(T0) ≥M

]
≤ E

[
Θh(T0)

]

M
≤ ǫ

2
.
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Hence, we can estimate

P

[
T̂ h(T0 +M) < T0 − 1

]

≤ P

[{
T̂ h(T0 +M) < T0 − 1

}
∩
{
Θh(T0) < M

}]
+ P

[
Θh(T0) ≥M

]

≤ P

[
T̂ h
(
T0 +Θh(T0)

)
< T0 − 1

]
+
ǫ

2
.

For (3.22), it only remains to convince ourselves that the last probability converges to
zero for hց 0. Consider

T0 +Θh(T0) ≥
nh(T0)−1∑

k=0

(
△h

kI{Ihk=0} +
h

Kh
k ∨ 1

I{Ih
k
=1}

)
= t̂hnh(T0)

.

Due to the boundedness of µ, σ(·) on [0, l] and (3.8), we get for small h that

T̂ h
(
T0 +Θh(T0)

)
≥ T̂ h

(
t̂hnh(T0)

)
= thnh(T0)

≥ T0 − sup
z∈Gh

l

△̃h(z) ≥ T0 − 1.

In the proof of Lemma 3.1.14, we needed the expectation of Θh to be bounded. We
show this in the following lemma. Its proof utilizes the specific features of our optimal
execution problem. Notice that the proxy Θh for the strategy resulting from a control Ih

is not pathwise bounded. This is due to the fact that a control step with Ihk = 1 leads
to an increase of Θh by at least h

l
, but the number of shares still to be traded Xh stays

constant with possibly positive probability, which is less than or equal to 1− 1
l
.

Lemma 3.1.15. For all T0 ∈ [0,∞) and admissible controls,

sup
h∈(0,1]

E
[
Θh(T0)

]
≤ l2 <∞.

Proof. For

nh
1(X

h) := inf{n ∈ N|Xh
n = 0},

we have

E[Θh(T0)] ≤ hE




nh
1 (X

h)−1∑

k=0

I{Ih
k
=1}


 ,

where the sum represents the number of control instances until all shares are bought.
Define the dynamics of X̃h by X̃h

0 := l and for E ⊂ {0, h, 2h, ..., l},

P

[
X̃h

n+1 ∈ E
∣∣∣Fh

n

]
:= p̃h

(
X̃h

n , I
h
n , E

)
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with

p̃h(x̃, 0, x̃) = p̃h(x̃, 2, x̃) = 1,

p̃h(x̃, 1, x̃) = 1− 1

l
,

p̃h(x̃, 1, x̃− h) =
1

l

and for i ∈ {0, 1, 2} and oll other x̃′, set p̃h(x̃, i, x̃′) = 0. Then X̃h
n stochastically

dominates Xh
n for all n ∈ N. Hence,

E




nh
1 (X

h)−1∑

k=0

I{Ihk=1}



 ≤ E




nh
1 (X̃

h)−1∑

k=0

I{Ihk=1}



 ≤ E
[
nh
1(Y

h)
]
,

where Y h is a classical asymmetric random walk with negative drift defined by Y h
0 := l,

P
[
Y h
n+1 − Y h

n = x̃
]
=

{
1− 1

l
for x̃ = 0

1
l

for x̃ = −h

}
.

Then

E
[
nh
1(Y

h)
]
=

∞∑

k= l
h

k P
[
nh
1(Y

h) = k
]

=

∞∑

k=0

(
l

h
+ k

)(
1

l

) l
h
(
1− 1

l

)k ( l
h
+ k − 1
k

)
=
l2

h
.

The last equation holds, since induction over N ∈ N shows

∞∑

k=0

(
1− 1

l

)k (
N + k
k

)
= lN+1.

The left-continuous inverse of T̂

T (s) := inf
{
r ≥ 0

∣∣∣T̂ (r) ≥ s
}

is finite a.s. thanks to Lemma 3.1.14. Moreover, T is nondecreasing and

T̂ (s) ≤ s, T (s) ≥ s,

T̂ (T (s)) = s, T
(
T̂ (s)

)
≤ s,

lim
s→∞

T (s) = ∞ a.s., T̂ (s) ∈ [0, r] ⇔ s ∈ [0, T (r+)] .
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Define the time-inverted processes and stopping time by

H := Ĥ ◦ T, τ0 := T̂ (τ̂0) . (3.23)

Due to {T (r) ≤ s} = {T̂ (s) ≥ r}, we know that T (r) is an F̂-stopping time for each
fixed r ∈ [0,∞). Therefore, H(s) is F̂ (T (s)) =: F0(s) measurable such that

F(s) := σ (H(r), r ∈ [0, s]) ⊂ F0(s).

The same properties as in Lemma 3.1.13 also hold for the time inverted processes.

Lemma 3.1.16. For all s ∈ [0,∞), the time inverted limit (H, τ0) satisfies:

1. T is nondecreasing and left-continuous.

2. B(s) =
∫
[0,s)

(−ρD(r), 0, µ (K(r))) dr

3. S1 = S2 ≡ 0 a.s. and the third component S3 is a continuous F0-martingale with

〈S3〉 (s) =

∫

[0,s)

σ2 (K(r)) dr, (3.24)

S3(s) =

∫

[0,s)

σ (K(r)) dW (r) (3.25)

for a Brownian motion W on an extension of (Ω,F , (F0) ,P).

4. Θ is nondecreasing and left-continuous, i.e. Θ ∈ Ã0 by setting ΘT = ΘT+.

5. R is componentwise nondecreasing and left-continuous with
∫

[0,∞)

I{D(r+)<l}dR1(r) =

∫

[0,∞)

I{K(r+)<l}dR2(r) = 0. (3.26)

6. Z is left-continuous, takes values in Gl a.s. and

Z(s) = z0 +B(s) + S(s) +

∫

[0,s)

(K(r),−1, 0) dΘ(r)− R(s), (3.27)

dD(s) = −ρD(s)ds+K(s)dΘs − dR1(s),

dK(s) = µ (K(s)) ds+ σ (K(s)) dWs − dR2(s).

Proof. Start by considering S. Since Ŝ3 is an F̂-martingale, we can conclude by the
optional stopping theorem and for 0 ≤ s1 ≤ s2, n ∈ N that

E

[
Ŝ3 (T (s2) ∧ n)

∣∣F̂ (T (s1))
]
= E

[
Ŝ3 (T (s2) ∧ n)

∣∣F̂ (T (s1) ∧ n)
]
= Ŝ3 (T (s1) ∧ n) .

As in the proof of Lemma 3.1.13, one can show that {Ŝ3(T (s)∧n), n ∈ N} is uniformly
integrable. Therefore,

lim
n→∞

Ŝ3 (T (s) ∧ n) = Ŝ3 (T (s)) in L1
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and E
[
S3(s2)

∣∣F0(s1)
]
= S3(s1), i.e. S3 is a martingale.

It is not obvious that S3 is continuous, since T is left-continuous. But since Sh
3 is not

control dependent, we do not have to use the time rescaling. Instead, we argue directly
for Sh

3 as in Lemma 3.1.12 that {Sh
3 , h > 0} is tight. We call its subsequential limit S̃3.

It is continuous analogously to Lemma 3.1.13. Let (S̃3, Ŝ3, T̂ ) be the subsequential limit
of (Sh

3 , Ŝ
h
3 := Sh

3 ◦ T̂ h, T̂ h). It follows that Ŝ3 = S̃3 ◦ T̂ and therefore S3 := Ŝ3 ◦ T = S̃3

must be continuous.

As before, one can show that

{(
Ŝ3 (T (s) ∧ n)

)2
, n ∈ N

}
and

{〈
Ŝ3

〉
(T (s) ∧ n) , n ∈ N

}

are uniformly integrable and thus L1-convergence holds for these terms as n → ∞.
With the optional sampling theorem applied to the martingale (Ŝ3)

2 − 〈Ŝ3〉,

E

[
(S3 (s2))

2 −
〈
Ŝ3

〉
(T (s2))

∣∣∣F0 (s1)
]

= lim
n→∞

E

[(
Ŝ3 (T (s2) ∧ n)

)2
−
〈
Ŝ3

〉
(T (s2) ∧ n)

∣∣∣F̂ (T (s1))

]

= lim
n→∞

(
Ŝ3 (T (s1) ∧ n)

)2
−
〈
Ŝ3

〉
(T (s1) ∧ n) = (S3 (s1))

2 −
〈
Ŝ3

〉
(T (s1)) .

That is (S3)
2−〈Ŝ3〉◦T is a martingale. Hence, the uniqueness of the quadratic variation

yields 〈S3〉 = 〈Ŝ3〉 ◦ T and (3.24) follows from (3.18). The existence of a Brownian
motionW satisfying (3.25) is a direct consequence of a martingale representation result
as given, e.g., in Karatzas and Shreve (2000), Theorem 3.4.2.

Let us show that

0 ≤
∫

[0,∞)

I{D(r+)<l}dR1(r) =

∫

[0,∞)

I{D̂(T (r+))<l}dR̂1 (T (r))

equals zero. We know from Lemma 3.1.13 that

∫

[0,∞)

I{D̂(r+)<l}dR̂1(r) = 0. (3.28)

That is problems can only arise at jump points r ∈ [0,∞) that exhibit reflection,
i.e. T (r+) > T (r) and R̂1(T (r+)) > R̂1(T (r)). Let us assume that D is not minimal
reflecting, i.e. D̂(T (r+)) < l. According to Lemma 3.1.13, D̂ is continuous. It is
also non-decreasing on [T (r), T (r+)], since the control increases D̂. Therefore, D̂ < l
on [T (r), T (r+)] and thus

∫

[T (r),T (r+)]

I{D̂(u+)<l}dR̂1(u) =

∫

[T (r),T (r+)]

dR̂1(u) > 0.
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This contradicts (3.28). Since K̂ is constant on [T (r), T (r+)] for all r ∈ [0,∞), the
same argument holds for the second reflection term. Alternatively, one could get this
result for R2 by the Lipschitz continuity of the Skorokhod map and by omitting the
time rescaling as done with S̃3 above. This would exploit that K is uncontrolled.

The remaining claims follow immediately from Lemma 3.1.13. For instance, (3.27) is
a consequence of (3.20) and (3.23). The stochastic differential equations for D and K
result from (3.27) as well as 2. and 3.

3.1.8 Convergence of the value function

So far, we have focused on the state space and control processes and their convergence
as h→ 0 as well as properties of the resulting limit processes. After these preparations,
we can now handle the convergence of the value function. Our approach consists of two
main steps, where the first one considers the lower limit and the second one the upper
limit of the discretized value function Uh. The arguments in the proof of the lower
limit in Budhiraja and Ross (2007) are not appropriate for our specific cost functional.
E.g. there is no consumption rate involved in our problem, we have to account for our
final cost term etc. Therefore, we have to find our own proof for the following result.

Recall that for z0 ∈ Gl, (z
h) is a sequence with Zh

0 = zh ∈ Gh+
l and limh→0 z

h = z0.
In the sequel, we use the following notation, if not stated otherwise: For given con-
trols {Ih, h > 0}, (Zh, Bh, Sh,Θh, Eh, Rh) as given in Subsection 3.1.3 denote the
continuous time processes corresponding to Ih in the original time scale, (Îh, Êh)
and Ĥh = (Ẑh, T̂ h, Θ̂h, R̂h, B̂h, Ŝh) are the corresponding rescaled processes as ex-
plained in Subsection 3.1.4 and Ĥ = (Ẑ, T̂ , Θ̂, R̂, B̂, Ŝ) as explained at the beginning
of Subsection 3.1.6 is the corresponding limit that we have thanks to the tightness
result in Subsection 3.1.5 with H = Ĥ ◦ T as in Subsection 3.1.7 being the process
transformed back to the original time scale.

Proposition 3.1.17. (Lower limit of the discrete value function).

lim inf
h→0

Uh
(
0, zh

)
≥ Ul

(
0, z0

)

Proof. Let (Ih)h>0, I
h ∈ Ah(zh) be a family of controls. According to Lemma 3.1.10,

lim inf
h→0

Jh
(
0, zh, Ih

)
= lim inf

h→0
E

[∫

[0,τ̂h0 )

(
D̂h(s) +

K̂h(s)

2
△Θ̂h(s)

)
dΘ̂h(s)

+

(
D̂h(τ̂h0 ) +

K̂h(τ̂h0 )

2
X̂h(τ̂h0 )

)
X̂h(τ̂h0 )

]

≥ E

[∫

[0,τ̂0)

(
D̂(s) +

K̂(s)

2
△Θ̂(s)

)
dΘ̂(s) +

(
D̂(τ̂0) +

K̂(τ̂0)

2
X̂(τ̂0)

)
X̂(τ̂0)

]
.
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Thanks to the tightness result Lemma 3.1.12 and the Skorokhod representation as
explained around (3.17), the last inequality follows from Fatou’s lemma. Let us show
that this expectation does not change when τ̂0 is replaced by

τ̂ 0 := inf
{
s ∈ [0,∞)

∣∣∣Ẑ(s) ∈ ∂0 or T̂ (s) ≥ T
}
.

Lemma VI.2.5 in Jacod and Shiryaev (2003) yields τ̂ 0 ≤ τ̂0. We next show that
if τ̂ 0 < τ̂0 with positive probability, this does not change the above expectation.

For T̂ (τ̂ 0) = T , we have T̂ (τ̂0) ≥ T . Since τ̂0 is defined as the limit of τ̂h0 , T̂ (τ̂0) = T and
hence τ̂ 0 = τ̂0. Consider T̂ (τ̂ 0) < T . Since X̂ is continuous and nonincreasing, it must
be less than or equal to zero on [τ̂ 0,∞). It cannot become strictly negative on [τ̂ 0, τ̂0)
because X̂ (τ̂0) ≥ 0. So even if there exists a scenario ω with τ̂ 0(ω) < τ̂0(ω), X̂ ≡ 0
on [τ̂ 0(ω), τ̂0(ω)).

That is it only remains to show that

E

[∫

[0,τ̂0)

(
D̂(s) +

K̂(s)

2
△Θ̂(s)

)
dΘ̂(s) +

(
D̂(τ̂ 0) +

K̂(τ̂ 0)

2
X̂(τ̂ 0)

)
X̂(τ̂ 0)

]
(3.29)

= E

[∫

[0,τ l0)

(
D(s) +

K(s)

2
△Θ(s)

)
dΘ(s) +

(
D(τ l0) +

K(τ l0)

2
X(τ l0)

)
X(τ l0)

]
(3.30)

for τ l0 from (3.2) and (D,X,K,Θ) defined via (D̂, X̂, K̂, Θ̂) as in (3.23). Then the
assertion follows with Lemma 3.1.16. Due to the construction of the time scaling, we
have τ l0 = T̂ (τ̂ 0). Thus, (3.30) equals

E

[∫

[0,T̂ (τ̂0))

(
D̂ (T (s)) +

K̂ (T (s))

2
△Θ̂ (T (s))

)
dΘ̂ (T (s)) (3.31)

+


D̂

(
T
(
T̂ (τ̂ 0)

))
+
K̂
(
T
(
T̂ (τ̂ 0)

))

2
X̂
(
T
(
T̂ (τ̂ 0)

))

 X̂

(
T
(
T̂ (τ̂ 0)

))]
.

We would be done in case of T (T̂ (τ̂ 0)) = τ̂ 0 a.s. by use of Lebesgue’s change of
time formula given in Protter (2004), Theorem 45 in a left-continuous version. The
scenarios with T (T̂ (τ̂ 0)) < τ̂ 0 correspond to a jump of the strategy Θ to levels x or
above. The costs of this jump are taken into account in the integral term in (3.29) and
in the-T (T̂ (τ̂ 0)) term in (3.31). Therefore, (3.29) and (3.31) are always equal to each
other.

Notice that the time rescaling, which we discussed in Subsection 3.1.4 to 3.1.7 and which
was crucial in the proof of Proposition 3.1.17, is from now on not needed anymore. The
remainder of this subsection is dedicated to the upper limit analog to Proposition 3.1.17.
The idea is to take a strategy Θǫ1 that is ǫ1-optimal for the continuous time problem
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with initial value z0. The ultimate goal is to approximate Θǫ1 by a family of discrete
strategies with admissible controls {Ih, h > 0} such that

Ul

(
0, z0

)
− ǫ1 ≥ Jl

(
0, z0,Θǫ1

)
= lim

h→0
Jh
(
0, zh, Ih

)
≥ lim sup

h→0
Uh
(
0, zh

)
. (3.32)

For ǫ1 ց 0, this proves Proposition 3.1.24, but the mentioned approximation is rather
involved. First of all, we show in Lemma 3.1.20 that Θǫ1 can without loss of generality
be replaced by a so called simple strategy, which is bounded, piecewise constant and
jumps ’in increments’ as described in Definition 3.1.18. Such a simple strategy can then
be approximated by controlled Markov chains, as explained in the five step scheme
below. Hence, a simple strategy can be interpreted as an interstage between Θǫ1 ∈ Ã0

and the controlled Markov chain belonging to Ih.

In summary, the lower limit of the discrete value function is proved by constructing
from admissible controls Ih a suitable limit via time rescaling and tightness. For the
upper limit, it is the other way around. We aim to approximate the strategy Θǫ1 by an
admissible control sequence Ih. There are only slight adjustments of analogous proofs
as in Budhiraja and Ross (2007), since the specific form of the value function plays a
secondary role compared to the strategy approximations.

Definition 3.1.18. (Simple strategy).
A strategy Θ ∈ Ã0 is called a simple strategy if it has all the following properties:

(i) Finite image and piecewise constant: There exist η1, η2 > 0, M ∈ N such that

Θ(s) ∈ {mη1|m = 0, ...,M}

for all s ∈ [0,∞) and Θ is constant on the time intervals (jη2, (j + 1)η2], j ∈ N.

(ii) Finite dependence on Brownian motion: There exists η̌2 > 0 such that η2 is an
integer multiple of η̌2 and for all j ∈ N, m ∈ {0, ..,M}

Pz

[
△Θ(jη2) = mη1

∣∣Θ(s), s ≤ jη2 ; W
K(s), s ≤ jη2

]

= Pz

[
△Θ(jη2) = mη1

∣∣Θ(iη2), i ≤ j ; WK(nη̌2), nη̌2 ≤ jη2
]

=: qj,m (T (j), z,W (j)) (3.33)

with T (j) := {Θ(iη2)|i ≤ j}, W (j) :=
{
WK(nη̌2)|nη̌2 ≤ jη2

}
and

q0,m(z) := Pz [△Θ(0) = mη1] .

(iii) Continuity: The above mappings qj,m are continuous for j = 0, 1, 2, ..., m ∈
{0, ..,M}.

Remark 3.1.19. In the existing literature, qj,m is assumed to be continuous in its second
and third component. As explained in the singular control step, our control direction is
state dependent. Therefore, we also need the continuity in the first component, which
will be relevant in the proof of Lemma 3.1.23.
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Lemma 3.1.20. (Simple strategy approximation).
For Θ ∈ Ã0, z

0 ∈ Gl and ǫ2 > 0, there exists a simple strategy Θǫ2 ∈ Ã0 such that
∣∣Jl
(
0, z0,Θ

)
− Jl

(
0, z0,Θǫ2

)∣∣ < ǫ2.

Proof. We apply an η1, η2 grid to Θ and show that the costs of the resulting strat-
egy Θη1,η2 converge to the costs of Θ when we refine the grid. In order to show the
stopping time convergence below, we assume without loss of generality that

Θ(s) = Θ(s)I{s<τ0} +
[
x0 + (s− τ0)

]
I{τ0≤s<τ0+1} + (x0 + 1)I{s≥τ0+1}. (3.34)

Define
Θη1,η2

j := mη1 if Θ(jη2) ∈ [mη1, (m+ 1)η1)

for j ∈ N, m = 0, 1, ...,M := ⌈ l+1
η1

⌉, Θη1,η2(0) := 0 and for s ∈ (jη2, (j + 1)η2]

Θη1,η2(s) := Θη1,η2
j .

Consider sequences η1,n, η2,n converging to zero as n → ∞ and set Θn := Θη1,n,η2,n .
Then (Zn,Θn) converges (in probability) in D ([0, T + 1] : R3 × [0, l + 1]) to (Z,Θ)
when n → ∞ and also τn0 , defined analogously to τ0, converges to τ0 due to the
construction (3.34). Using dominated convergence, this shows that the expected costs
of Θn converge to the expected costs of Θ as desired.

For given η1, η2, let us approximate Θη1,η2 by a simple strategy Θη̌2 , which satisfies the
finite dependence and continuity property. To do so, let qη1,η2j,m be the conditional ex-
pectations as in (3.33) that belong to Θη1,η2 and define the dynamics of the process Θη̌2

via Θη̌2(0) := 0,

Pz

[
△Θη̌2(jη2) = mη1

∣∣Θη1,η2(iη2), i ≤ j ; WK(nη̌2), nη̌2 ≤ jη2
]
:=

qη1,η2j,m (T η1,η2(j), z,W (j))

and Θη̌2 constant on (jη2, (j + 1)η2]. Due to the martingale convergence theorem, Θη̌2

converges to Θη1,η2 as η̌2 ց 0.

For the continuity property, the idea is to approximate qj,m by mollified functions. E.g.
for F : R → R integrable, the mollified function

F ϑ(x) :=
1√
2πϑ

∫ ∞

−∞
F (x+ y)e−

y2

2ϑdy =
1√
2πϑ

∫ ∞

−∞
F (y)e−

(y−x)2

2ϑ dy

is continuous and converges to F as ϑ ց 0. We exemplarily go through this mollifier
argument for the w-component. For ϑ > 0, define

qϑj,m (T (j); z;w (nη̌2) , nη̌2 ≤ jη2) :=

N(ϑ)

∫
...

∫
qj,m

(
T (j), z, (w(nη̌2) + yn)n=0,...,

jη2
η̌2

) jη2
η̌2∏

n=0

(
e−

y2n
2ϑ dyn

)
.
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for the normalizer N(ϑ) such that
∑M

m=0 q
ϑ
j,m = 1. Define the piecewise constant con-

trol Θϑ by setting its corresponding conditional probability to qϑ. Due to the piecewise
constant nature of both Θ and Θϑ, the corresponding costs Jl(0, z

0,Θ), Jl(0, z
0,Θϑ)

are the expectation of the sum of the cost of the trades at jη2. Due to the construc-
tion, △Θ(jη2) and △Θϑ(jη2) have the same probability law in the limit and hence also
the costs converge as ϑց 0.

Thanks to Lemma 3.1.20, we can without loss of generality assume the strategy Θǫ1

in (3.32) to be a simple strategy. That is we take η1, η2,M, η̌2, qj,m(·) corresponding
to Θǫ1 as given and use these quantities to define discrete strategies

(
Ihn , Z

h
n

)
n∈N

by the following five step scheme. Notice that this scheme is designed for the conver-
gence proof only and does not have anything to do with the implementation.

Construction of discrete strategies for given simple strategy and fixed h > 0

1. Initialization: Set ñ0 := 0, Zh
0 := zh, draw m ∈ {0, ...,M} with probabil-

ity q0,m(z
h) and put T h(1) := {mη1}.

2. Control with reflection: If m = 0, set the number of control steps to n1 := 0.
Otherwise define (Ihn , Z

h
n+1)n=0,...,n1−1 as follows:

Set Ih0 := 1. Draw Zh
1 from ph(Zh

0 , I
h
0 , ·). If Zh

1 ∈ ∂hR set Ih1 := 2, otherwise Ih1 := 1.
Draw Zh

2 from ph(Zh
1 , I

h
1 , ·) etc. until ⌊mη1( h

κh∨1)
−1⌋ control steps have been done.

Let n1 denote the total number of control and reflection steps needed so far.

3. Diffusion with reflection:
Let ñ1 := inf{n|thn ≥ η2} and define (Ihn , Z

h
n+1)n=n1,...,ñ1−1 as follows:

If Zh
n1

∈ ∂hR set Ihn1
:= 2, otherwise Ihn1

:= 0. Draw Zh
n1+1 from ph(Zh

n1
, Ihn1

, ·) etc.

4. Brownian motion:
For n = ñ0, ..., ñ1 − 1 and independent, standard normally distributed νn, define

W h
n :=

n−1∑

i=0

{
Sh
i+1,3 − Sh

i,3

σ
(
Kh

i

) I{σ(Kh
i ) 6=0} + νi

√
△h

i I{σ(Kh
i )=0}

}

with Sh obtained from Zh as in (3.10). This choice of W h is motivated by (3.25).
For s ∈ (0, η2], W

h(s) :=W h
nh(s) −W h

ñ0
and W h(1) := {W h(nη̌2)|nη̌2 ≤ η2}.

5. Start next loop: For ñk := inf{n|thn ≥ kη2}, let (Ihn , Zh
n+1)n=0,...,ñk−1, T

h(k),W h(k)
be given. Drawm from qk,m(T

h(k), Zh
ñk
,W h(k)) and T h(k+1) := T h(k)∪{mη1}.

Continue with Step 2 with the coefficients being adjusted to k + 1.

In Lemma 3.1.21, we show that the law of the continuous time interpolation (Zh,W h)
converges weakly to the law of (Zǫ1,WK) on a fixed interval [jη2, (j+1)η2) of the simple
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strategy as h→ 0. Having no control instances on the inner part of this interval is the
trick to get tightness without having to use the time rescaling method. That is for a
simple strategy with Z(0) = (δ, x, κ) ∈ Gl and s ∈ (0, η2], there exists m ∈ {0, ..,M}
such that

Θ(s) ≡ mη1, D(s) = [(δ + κmη1) ∧ l] e−ρs, X(s) ≡ x−mη1,

K(s) = κ+

∫

[0,s)

µ (K(r)) dr +

∫

[0,s)

σ (K(r)) dWK(r)−
∫

[0,s)

dR2(r).

Lemma 3.1.21. (Weak convergence on no control period).
Let Θ be a simple strategy with corresponding (Z,WK). Set Zh

0 := zh and define
(Ihn , Z

h
n+1)n=0,...,ñ1−1 as in the five step scheme above. Replace △h

0 by △h
0+ǫ

h with ǫh ց 0
and Zh(s) := Zh

nh(s)
. Denote the laws of (Zh,W h) and (Z,WK) on D([0, η2] : R

4)

by Πh
m,δh

and Πm. Then Πh
m,δh

w→ Πm as h→ 0, where h indexes a suitable subsequence.

Remark 3.1.22. We need to allow for ǫh in Lemma 3.1.21, since it can happen in Step 3
of our scheme that thñk

> kη2. Hence, the following control step sits at thñk
instead

of kη2. The ǫ
h corresponds to the difference (thñk

− kη2).

Proof. The sequence of distributions corresponding to the process W h from Step 4 is
tight as one can show as in Lemma 3.1.12. The limit ofW h must be a Brownian motion
as can be shown, e.g., as in 3. of Lemma 3.1.13 together with Lévy’s condition.

Since there is no control in the interior of the considered time interval and Zh is con-
structed in Step 2 and 3 according to the diffusion and control consistency conditions,
it is clear that the weak convergence holds for Zh.

In Lemma 3.1.23, we exploit Lemma 3.1.21 to conclude that the costs of a simple
strategy are equal to the costs of the corresponding Ih from the five step scheme in the
limit. We can then conclude in Proposition 3.1.24 that (3.32) holds.

Lemma 3.1.23. (Cost convergence for the five step scheme).
Let Θ be a simple strategy and take {Ih, h > 0} from the five step scheme. Then

Jl
(
0, z0,Θ

)
= lim

h→0
Jh
(
0, zh, Ih

)
.

Proof. Let us have a closer look at Θh corresponding to Ih from the five step scheme. In
Step 2 and thanks to the continuity property of a simple strategy, we see that the condi-
tional jump distribution of Θh is close to the jump distribution of the simple strategy Θ.
According to Step 3 and as explained in Remark 3.1.22, the jump times of Θh are close
to the jump times {0, η2, 2η2, ...} of Θ. It follows that Θh w→ Θ on D([0,∞) : R). As we
have seen in Lemma 3.1.21, we also have convergence of (Zh,W h) to (Z,WK) between
the jump times. Cost convergence then follows as in the proof of Lemma 3.1.20.
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Proposition 3.1.24. (Upper limit of the discrete value function).

lim sup
h→0

Uh
(
0, zh

)
≤ Ul

(
0, z0

)

Proof. The claim follows immediately from (3.32) together with Lemma 3.1.20 and the
cost convergence from Lemma 3.1.23.

As a direct consequence of Proposition 3.1.17 and 3.1.24, we obtain the main result of
this section.

Theorem 3.1.25. (Convergence of the value function as mesh size decreases).

lim
h→0

Uh
(
0, zh

)
= Ul

(
0, z0

)

It was our main purpose to show this convergence theorem. As an additional conse-
quence of our considerations, we get existence of an optimal strategy for the truncated
value function in the following corollary. Such an existence result is not contained
in Kushner and Dupuis (2001), Kushner and Martins (1991) or Budhiraja and Ross
(2007). It may be of interest in our problem, since we needed additional convexity
assumptions in order to prove existence for the original, non-truncated problem in
Proposition 2.4.3.

Corollary 3.1.26. (Existence of an optimal strategy for the truncated value function).
There exists Θl ∈ Ã0 such that

Ul(0, z
0) = Jl(0, z

0,Θl).

Proof. Our aim is to show that there exists a sequence of controls (Ihn)n∈N with hn ց 0
and

Ul

(
0, z0

)
= lim

n→∞
Jhn

(
0, zhn , Ihn

)
. (3.35)

Following the same tightness argument as in the proof of Proposition 3.1.17, we then
get the existence of Θl ∈ Ã0 such that the right-hand side equals Jl(0, z

0,Θl) and we
are done. More precisely, we define the controlled Markov chain Zhn using Ihn and do
the time rescaling, which yields the corresponding Ĥhn. The tightness Lemma 3.1.12
then guarantees the existence of Ĥ such that Ĥhn

w→ Ĥ and we can undo the time
rescaling to get H containing Θl and having the nice properties given in Lemma 3.1.16.

It only remains to show (3.35). Let us take a minimizing sequence of strategies Θǫ ∈ Ã0

such that

Ul(0, z
0) = lim

ǫ→0
Jl
(
0, z0,Θǫ

)
.
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Due to Lemma 3.1.20, we can assume each Θǫ to be a simple strategy. For a given simple
strategy Θǫ, we can use the five step scheme to define Markov chain controls (Ih,ǫ)h>0

such that Lemma 3.1.23 guarantees

Jl
(
0, z0,Θǫ

)
= lim

h→0
Jh(0, zh, Ih,ǫ). (3.36)

We do a diagonalization argument. Consider a sequence (ǫk)k∈N with ǫk ց 0 as k → ∞.

For k = 1 and according to (3.36), there exists h
(1)
n ց 0 such that

Jl
(
0, z0,Θǫ1

)
= lim

n→∞
Jh

(1)
n

(
0, zh

(1)
n , Ih

(1)
n ,ǫ1

)
.

The same equation is true for ǫ2 and a subsequence (h
(2)
n ) of (h

(1)
n ). Ergo, taking the

diagonal sequence (h
(n)
n ) yields

Ul

(
0, z0

)
= lim

ǫ→0
Jl
(
0, z0,Θǫ

)
= lim

n→∞
Jh

(n)
n

(
0, zh

(n)
n , Ih

(n)
n ,ǫn

)

as desired in (3.35).

3.1.9 Dynamic programming equation

Thanks to the state space truncation in Proposition 3.1.1 and the convergence in The-
orem 3.1.25, we can fix a large l > 0 for the grid range and a small h > 0 for the mesh
size of the grid and approximate the value function by calculating Uh as given in (3.7).
Assume for simplicity that l is a multiple of h and T is a multiple of the time step dth.
In the following, we go backwards in time and use dynamic programming in order to
derive an algorithm for the calculation of Uh on the grid.

Let us give a preliminary remark concerning reflection. Due to normal reflection of the
controlled Markov chain, we get for z ∈ ∂hR\∂h = {(l+h, x, κ), (δ, x, l+h)}, that Ih0 = 2
and

Uh (t, (l + h, x, κ)) = Uh (t, (l, x, κ)) , Uh (t, (δ, x, l + h)) = Uh (t, (δ, x, l)) .

As boundary conditions, we get from (3.7) that

Uh
(
t,
(
δh, 0, κh

))
= 0 and

Uh
(
T, zh

)
=

(
δh +

κh

2
xh
)
xh.
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For t ∈ {0, dth, ..., T − dth}, zh ∈ Gh
l , we can take a diffusion or control step. Hence,

Uh
(
t, zh

)
= min

{
∑

z′∈Gh+
l

ph
(
zh, 0, z′

)
Uh
(
t +△h

(
zh, 0

)
, z′
)
,

(
δh +

κh

2

h

κh ∨ 1

)
h

κh ∨ 1
+
∑

z′∈Gh+
l

ph
(
zh, 1, z′

)
Uh
(
t +△h

(
zh, 1

)
, z′
)
}

= min
{
qh(0)
(
zh, zh

)
Uh
(
t+ dth, zh

)
(3.37)

+qh(0)
(
zh,
(
δh − h, xh, κh

))
Uh
(
t+ dth,

(
δh − h, xh, κh

))

+qh(0)
(
zh,
(
δh, xh, κh − h

))
Uh
(
t+ dth,

(
δh, xh, κh − h

))

+qh(0)
(
zh,
(
δh, xh, κh + h

))
Uh
(
t+ dth,

(
δh, xh,

(
κh + h

)
∧ l
))
,

(
δh +

κh

2

h

κh ∨ 1

)
h

κh ∨ 1

+qh(1)
(
zh,
(
δh, xh − h, κh

))
Uh
(
t,
(
δh, xh − h, κh

))

+qh(1)
(
zh,
(
δh + h, xh, κh

))
Uh
(
t,
(
(δh + h) ∧ l, xh, κh

))

+qh(1)
(
zh,
(
δh + h, xh − h, κh

))
Uh
(
t,
(
(δh + h) ∧ l, xh − h, κh

)) }
.

This equation induces an explicit scheme for the computation of Uh(t, zh) by a nested
for-loop over

t = T − dth, ..., 0 (3.38)

κh = 0, h, ..., l

δh = l, l − h, ..., 0

xh = h, 2h, ..., l.

In each step, we calculate the term corresponding to diffusion and control in (3.37),
compare these two terms and set Uh(t, zh) to the minimum. The order (3.38) in the for-
loop is chosen such that we always know Uh at all neighboring points that are necessary
for this calculation. Since we run through all state dimensions (δ, x, κ) separately, this
algorithm has complexity

O

(
T

dth

[
l

h

]3)
.

Recall the dimension reduction from Lemma 1.3.1. It would be nice to reduce the
complexity of the algorithm by combining the x and δ dimension. This is the topic of
the next subsection.

3.1.10 Complexity-reduced dynamic programming equation

The aim of this subsection is to modify the numerical scheme (3.37) such that it has
two instead of three state space dimensions. To do so, we need to state the scaling
Lemma 1.3.1 as a version for the value function Uh on the grid.
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Lemma 3.1.27. (Dimension reduction for the discrete value function).
Assume that one is an integer multiple of h, t ∈ [0, T ] and zh ∈ Gh

l . Let v ∈ N be the

least common multiple of δh and one, as well as v ∨ ⌈xh/h
δh

⌉hv ≤ l. Then

Uh

(
t,

(
1,

⌊
xh/h

δh

⌋
h, κh

))
≤
(
δh
)−2

Uh
(
t, zh

)
≤ Uh

(
t,

(
1,

⌈
xh/h

δh

⌉
h, κh

))
,

(3.39)
where ⌊x⌋ and ⌈x⌉ denote, respectively, the nearest integers smaller and larger than x.

Proof. From the definition (3.7) of Jh, we see that (1.21) holds analogously, but we
need to take care to stay on the grid Gh

l . We have v
δh

∈ N and dimension reduction
yields

( v
δh

)2
Uh
(
t,
(
δh, xh, κh

))
= Uh

(
t,
(
v,
v

δh
xh, κh

))

as well as

v2Uh

(
t,

(
1,

⌊
xh/h

δh

⌋
h, κh

))
= Uh

(
t,

(
v,

⌊
xh/h

δh

⌋
hv, κh

))

and

v2Uh

(
t,

(
1,

⌈
xh/h

δh

⌉
h, κh

))
= Uh

(
t,

(
v,

⌈
xh/h

δh

⌉
hv, κh

))
.

Plugging this into the assertion (3.39) yields

Uh

(
t,

(
v,

⌊
xh/h

δh

⌋
hv, κh

))
≤ Uh

(
t,
(
v,
v

δh
xh, κh

))
≤ Uh

(
t,

(
v,

⌈
xh/h

δh

⌉
hv, κh

))
,

since ⌊
xh/h

δh

⌋
hv ≤ v

δh
xh ≤

⌈
xh/h

δh

⌉
hv.

We see from (3.39) that it suffices to calculate Uh(t, (1, xh, κh)) and this gives us an
approximation for Uh on the whole grid. That is we can set δh = 1 in the dynamic
programming equation (3.37). The right-hand side of (3.37) then contains, e.g., the
term

Uh
(
t + dth,

(
1− h, xh, κh

))
.

If (1, xh/(1 − h), κh) is not a grid point, i.e. the left-hand and the right-hand term
of (3.39) are unequal, we need to approximate this term by a linear interpolation using
the neighboring grid points

(
1,

⌊
xh/h

1− h

⌋
h, κh

)
and

(
1,

⌈
xh/h

1− h

⌉
h, κh

)
.
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That is

Uh
(
t+ dth,

(
1− h, xh, κh

))
= (1− h)2 (3.40)

{
O(h2) + Uh

(
t + dth,

(
1,

⌊
xh/h

1− h

⌋
h, κh

))
+

1

h

(
xh

1− h
−
⌊
xh/h

1− h

⌋
h

)

[
Uh

(
t+ dth,

(
1,

⌈
xh/h

1− h

⌉
h, κh

))
− Uh

(
t+ dth,

(
1,

⌊
xh/h

1− h

⌋
h, κh

))]}
.

Due to xh/(1−h) > xh, our results are only reliable for xh < l(1−h)n, where n stands
for the number of iterations. That is for fixed h, we need to choose l quite large in
the dimension-reduced case in order to get reliable results for small values of xh. This
is a disadvantage of the dimension-reduced Kushner implementation compared to the
direct implementation of the dimension-reduced HJB variational inequality, that we
heuristically present in the next subsection.

The O(h2) error due to the linear interpolation is negligible for small h. Hence,

Uh
(
t,
(
1, xh, κh

))
= min

{
qh(0)
(
zh, zh

)
Uh
(
t + dth, zh

)
(3.41)

+qh(0)
(
zh,
(
1− h, xh, κh

))
Uh
(
t + dth,

(
1− h, xh, κh

))

+qh(0)
(
zh,
(
1, xh, κh − h

))
Uh
(
t+ dth,

(
1, xh, κh − h

))

+qh(0)
(
zh,
(
1, xh, κh + h

))
Uh
(
t + dth,

(
1, xh,

(
κh + h

)
∧ l
))
,

(
1 +

κh

2

h

κh ∨ 1

)
h

κh ∨ 1

+qh(1)
(
zh,
(
1, xh − h, κh

))
Uh
(
t,
(
1, xh − h, κh

))

+qh(1)
(
zh,
(
1 + h, xh, κh

))
Uh
(
t,
(
1 + h, xh, κh

))

+qh(1)
(
zh,
(
1 + h, xh − h, κh

))
Uh
(
t,
(
1 + h, xh − h, κh

)) }

with zh =
(
1, xh, κh

)
is the dimension-reduced dynamic programming equation. The

boldly-printed terms need to be replaced by a linear interpolation as explained in (3.40).
The complexity of this algorithm reduces to

O

(
T

dth

[
l

h

]2)
.

3.2 Finite difference method

As an alternative to the Kushner method from Section 3.1, we now want to discuss the
solution of variational inequality (1.25) using an explicit finite difference method, which
we derive and explain in the first part of this section. This discussion will be heuristic,
i.e. we neither give a verification argument nor do we prove that the value function
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from the numerical scheme converges to a solution of (1.25). Anyhow, it turns out
that stability issues arise. Therefore, we need to be careful with the choice of the grid
and model parameters. The second part of this section is devoted to the specification
of necessary conditions for the stability of this numerical scheme. These conditions
are similar to the condition in Section 3.1 to have positive transition probabilities for
the controlled Markov chain. We will also see heuristically that the Kushner imple-
mentation from Section 3.1 and the implementation of the HJB variational inequality
correspond to each other.

3.2.1 Explicit finite difference scheme

For an introduction to finite difference methods we refer to Seydel (2004), Chapter 4.
It is the most elementary approach to the numerical solution of a differential equations.
The idea is to approximate the value function on an equidistant grid. We know the
value function at T . Replacing the derivatives in the variational inequality (1.25) by
difference quotients, we can calculate the value function at T −∆t etc. Let us explain
this approach in more detail.

Fix 0 < ymax, 0 < κmin < κmax and consider the value function on [0, T ]× [0, ymax] ×
[κmin, κmax]. Choose step sizes △t,△y,△κ > 0 and look for approximations vni,j of the
value function V (n△t, i△y, κmin + j△κ) on an equidistant grid with

Mt :=
T

△t , n = 0, ...,Mt,

My :=
ymax

△y , i = 0, ...,My,

Mκ :=
κmax − κmin

△κ , j = 0, ...,Mκ.

As boundary condition, we have vn0,j = 0 for all n, j. Define

ρn := ρn△t, µn
j := µ (n△t, κmin + j△κ) , σn

j := σ (n△t, κmin + j△κ) .
We work backward in time using the terminal condition

vMt

i,j := i△y + 1

2
(κmin + j△κ) (i△y)2 ,

which is valid for all i = 0, ...,My, j = 0, ...,Mκ.

Consider the partial differential equation W(V ) = 0. Replacing the time derivative
in this PDE by a backward difference quotient and the spatial derivatives by central
differences yields

vni,j − vn−1
i,j

△t − 2ρnvni,j + ρni△y
vni+1,j − vni−1,j

2△y

+ µn
j

vni,j+1 − vni,j−1

2△κ +
1

2

(
σn
j

)2 vni,j+1 + vni,j−1 − 2vni,j

(△κ)2
= 0.
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For i = 1, ...,My − 1 and j = 1, ...,Mκ − 1, this motivates us to take the following
approximation in the wait region:

v̌n−1
i,j := vni,j (1− 2ρn△t)

+ △t
(
ρni△y

vni+1,j − vni−1,j

2△y + µn
j

vni,j+1 − vni,j−1

2△κ +
1

2

(
σn
j

)2 vni,j+1 + vni,j−1 − 2vni,j

(△κ)2
)
.

For j = 0 (i = My or j = Mκ), we need to take a forward (backward) instead of a
central difference. Notice that we have constructed a two level explicit finite difference
scheme, meaning that we can calculate v̌n−1 directly from vn without having to solve
a system of equations.

Consider the partial differential equation B(V ) = 0. Accordingly,

1 + 2 (κmin + j△κ) vn−1
i−1,j −

(
1 + (κmin + j△κ)

(
i− 1

2

)
△y
)
vn−1
i,j − vn−1

i−1,j

△y = 0.

For i = 1, ...,My and j = 0, ...,Mκ, this motivates

v̂n−1
i,j := vn−1

i−1,j +△y
1 + 2 (κmin + j△κ) vn−1

i−1,j

1 + (κmin + j△κ)
(
i− 1

2

)
△y .

In order to find out if it is optimal to wait or buy, we set

vn−1
i,j := min

{
v̌n−1
i,j , v̂n−1

i,j

}
.

Summary of the algorithm

Set initial condition vMt

i,j ∀i, j
For n =Mt, ..., 1

Set boundary condition vn−1
0,j = 0 ∀j and BRn−1 = ∅

Calculate v̌n−1
i,j ∀i, j from vn

For j = 0, ...,Mκ

For i = 1, ...,My

Calculate v̂n−1
i,j from vn−1

i−1,j

If v̌n−1
i,j > v̂n−1

i,j

vn−1
i,j = v̂n−1

i,j and BRn−1 = BRn−1 ∪ {(i△y, κmin + j△κ)}
Else vn−1

i,j = v̌n−1
i,j

3.2.2 Finite difference linked to Markov chain method

Let us demonstrate heuristically that the numerical scheme, that we derived using
the Kushner method, can be understood as an explicit finite difference scheme of the
variational inequality (1.24). We use Uh,δ+,x−

+ etc. as a short hand notation for

Uh
(
t + dth,

(
δh + h, x− h, κh

))
etc.
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Ignoring reflection and plugging the diffusion and control transition probabilities qh(0)
and qh(1) explicitly into the dynamic programming equation (3.37) yields

min

{
Uh
+ − Uh

dth
− ρδh

Uh
+ − Uh,δ−

+

h
+ µ

(
κh
)+ Uh,κ+

+ − Uh
+

h
− µ

(
κh
)− Uh

+ − Uh,κ−
+

h

+
1

2
σ2
(
κh
) Uh,κ+

+ + Uh,κ−
+ − 2Uh

+

h2
,

{
κh Uh,δ+,x−−Uh,x−

h
− Uh−Uh,x−

h
+ δh + κh

2
h for κh ≤ 1

κh Uh,δ+−Uh

h
− Uh,δ+−Uh,δ+,x−

h
+ δh + 1

2
h otherwise

}}
= 0.

That is for small h, (3.37) is an equation that we can get by replacing the derivatives
in the HJB variational inequality

min

{
∂tU − ρδ∂δU + µ∂κU +

1

2
σ2∂κκU, κ∂δU − ∂xU + δ

}
= 0

by difference quotients. In fact, we have chosen the diffusion transition probabilities qh(0)
specifically such that this correspondence to the HJB equation holds.

3.2.3 Stability of an initial-value problem

In general, explicit finite difference schemes as introduced in Subsection 3.2.1 and 3.2.2
are easy to derive and implement, but one needs to be careful when choosing the
parameters such as the step sizes to get approximations that converge to the solution
of the considered PDE. In this subsection, we discuss this stability issue at least for a
scheme of an initial-value problem which is similar to our schemes above. The material
of this subsection is taken from Thomas (1995).

Take the following initial-value problem as an illustration: For constant coefficients
δ, δy, δκ, δκκ, let G : [0,∞)× R2 → R with initial condition G(0, y, κ) = y + κ

2
y2 and

∂tG+ δG+ δy(∂yG) + δκ(∂κG) + δκκ(∂κκG) = 0. (3.42)

This initial-value problem is similar to our wait region PDE. In practice, there are
four aspects that make stability for the algorithm explained in Subsection 3.2.1 more
complicated than for this simple initial-value problem. First, the implementation of
the algorithm is done for the truncated state space [0, ymax] × [κmin, κmax]. That is
we cannot use the norm given in Definition 3.2.1 below, but would have to deal with
sequences of norms. Second, we have to take the boundary condition V (t, 0, κ) = 0
into account. However, the stability conditions, that we will get for the simple initial-
value problem, are still necessary, when we truncate the state space and set boundary
conditions. Third, the coefficients of W(V ) = 0 are not constant. This would spoil
calculation (3.45). Therefore, we can only check local stability at every point (t, y, κ)
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with the method described in this subsection. Fortunately, according to Richtmyer and
Morton (1994), Chapter 5, practical experience shows that instabilities usually start
as local phenomena. As a fourth difficulty, we are not aware of any discussion in the
literature concerning the stability of a difference scheme, when two PDEs are combined
as in our variational inequality.

For n ∈ N, i, j ∈ Z, derive an explicit finite difference scheme for (3.42)

gn+1
i,j = gni,j (1− δ△t) (3.43)

−△t
(
δy
gni+1,j − gni−1,j

2△y + δκ
gni,j+1 − gni,j−1

2△κ + δκκ
gni,j+1 + gni,j−1 − 2gni,j

(△κ)2
)
.

Define the infinite dimensional sequence space in two dimensions with the two norm

l2 :=

{
g = (gi,j)i,j∈Z :

∞∑

i,j=−∞
|gi,j|2 <∞

}
, ||g||l2 :=

√√√√
∞∑

i,j=−∞
|gi,j|2△y△κ.

Let us discuss the issue of convergence of a numerical scheme in more detail. Since it is
difficult to establish convergence directly, one uses Lax’s Equivalence Theorem, which
states that a consistent, two level difference scheme is convergent if and only if it is
stable. Most of the schemes are consistent. Therefore, the main difficulty is to prove
stability. Intuitively speaking, a difference scheme is stable if small errors in the initial
condition cause small errors in the solution.

Definition 3.2.1. (Stability according to Thomas (1995)).
A difference scheme is stable with respect to || · ||l2 if there exist △y0,△t0 > 0, H, β ≥ 0
such that for all △y,△κ ≤ △y0 and △t ≤ △t0

∣∣∣∣gn+1
∣∣∣∣
l2
≤ Heβ(n+1)△t

∣∣∣∣g0
∣∣∣∣
l2
.

For the following stability result, Parseval’s Identity is essential. It says that the norm
of g in l2 is equal to the norm of the discrete Fourier transform of g

ĝ(η1, η2) =
1

2π

∞∑

i,j=−∞
e−iiη1−ijη2gi,j

in the space of complex valued, Lebesgue square integrable functions on [−π, π]2

L2 :=

{
ĝ : [−π, π]2 → C :

∫

[−π,π]2
|ĝ(η1, η2)|2dη1dη2 <∞

}
,

||ĝ||L2 :=

√∫

[−π,π]2
|ĝ(η1, η2)|2dη1dη2.

Define the symbol of the difference scheme p via

ĝn+1 = p(η1, η2)ĝ
n.
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Proposition 3.2.2. (Von Neumann condition according to Thomas (1995)).
The difference scheme for the initial-value problem is stable if and only if there exist
△y0, △t0, H > 0 such that for all △y, △κ ≤ △y0, △t ≤ △t0 and η1, η2 ∈ [−π, π]

|p (η1, η2)| ≤ 1 +H△t. (3.44)

As Thomas (1995) points out, care must be taken when using the notion of stability
from Definition 3.2.1. The von Neumann condition (3.44) with a nonzero H allows
for exponential growth of the solution, i.e., Definition 3.2.1 only guarantees that the
instability is less than or equal to an exponential. Let us calculate the symbol of our
scheme (3.43). Define

ry :=
△t
2△y , ryy :=

△t
(△y)2 , rκ :=

△t
2△κ, rκκ :=

△t
(△κ)2 .

Then

gn+1
i,j = gni,j (1− δ△t+ 2δκκrκκ) + gni−1,jδyry − gni+1,jδyry

+ gni,j−1 (δκrκ − δκκrκκ)− gni,j+1 (δκrκ + δκκrκκ) .

Therefore,

ĝn+1 =
1

2π

∞∑

i,j=−∞
e−iiη1−ijη2gn+1

i,j =
{
1− δ△t+ 2δκκrκκ + e−iη1δyry − eiη1δyry

+ e−iη2 (δκrκ − δκκrκκ)− eiη2 (δκrκ + δκκrκκ)
}
ĝn. (3.45)

That is

p (η1, η2) = [1− δ△t+ 2δκκrκκ (1− cos (η2))]− 2i [δyry sin (η1) + δκrκ sin (η2)] .

Let δκκ < 0. If we choose ryy and rκκ as fixed constants with rκκ < − 1
2δκκ

, then there
exists △t0 > 0 such that for all △t < △t0

|p (η1, η2)|2 = [1− δ△t+ 2δκκrκκ (1− cos (η2))]
2

+
[
δ2yryy + δ2κrκκ + 2|δyδκ|

√
ryyrκκ

]
△t < 1.

We can adapt this result to the finite difference scheme, that we introduced in Subsec-
tion 3.2.1. Since it is a backward instead of a forward scheme, −1

2
σ2 plays the role of δκκ.

As experiments show, we get good numerical results by taking ryy = rκκ ≈ σ−2
max ∧ 1

and △t reasonably small. Notice that this stability condition, that we heuristically
derived for the finite difference scheme, is similar to the positive transition probability
condition (3.8) from the Markov chain method. In both cases, the square of the state
space mesh size has to be of the order of the time step.
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3.3 Cox-Ingersoll-Ross price impact

We discussed the numerical scheme based on the Markov chain method in Section 3.1
and based on the HJB variational inequality in Section 3.2. In Subsection 3.2.2, we
pointed out the similarity of these two alternatives. Since we were able to prove conver-
gence for the Markov chain method, we pick this one in its dimension-reduced form to
exemplarily implement our optimization problem for the mean-reverting CIR process
from Assumption SpecialCIR where

dKs = µ̄
(
K̄ −Ks

)
ds+ σ̄

√
KsdW

K
s .

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

10

k

c(
t,k

)

OW barrier evolution

 

 

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

80

90

100

t

Θ
t

OW optimal strategy

 

 

Figure 3.6: Numerical treatment of the constant liquidity case with ρ = 5, T = 0.25, ymax =
30, κmax = 2, △t = 0.00005, h = 0.05. Left: The numerically calculated and the theoretical
(dashed) barrier between wait and buy region c(t, κ) for several values of t (t = 0, 14T,

1
2T,

3
4T

top down). Right: Comparison of the optimal strategy from our numerical scheme for δ =
0, x = 100 with the theoretical value (dashed).

Specify nine parameters, in order to apply the numerical scheme (3.40)

ρ, µ̄, K̄, σ̄, T, ymax, κmax, h, dth = △t.

Without our earlier considerations, it would be hard to guess a good combination
of these parameters such that the numerical scheme yields reasonable results. The
transition probabilities of the Markov chain must be positive. Even in the constant
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liquidity case with µ̄ = σ̄ = 0, we have to take care of condition (3.9). An example is
given in Figure 3.6. Our numerical results are close to the theoretical optimal strategy
given in Proposition 2.2.2.

In Figure 3.7, we state the result of our implementation for the CIR process for two
different values of mean-reversion speed µ̄. The corresponding parameter choices satisfy
the assumptions of Proposition 2.4.13 such that WR-BR structure is guaranteed. The
size of the wait region is decreasing in time in both cases of Figure 3.7. The barrier
profile c(t, κ) is rather flat in κ for low mean-reversion, but clearly increasing in κ for
high mean-reversion. That is according to Proposition 2.3.7, our trades are aggressive
in the liquidity compared to the passive in the liquidity trades that we get for the
GBM. The aggressive in the liquidity behavior becomes also clear, when one looks at
the reaction of the optimal strategy Θt(ω) on the illiquidity process Kt(ω). At times
of high Kt, it falls behind the constant liquidity strategy, while trading is accelerated,
when Kt is low. Observe that there are flat stretches in the optimal strategy in the
picture at the bottom on the right. During these time spans, the optimal ratio of
outstanding shares over order book deviation is in the interior of the wait region.
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Figure 3.7: Implementation for the CIR process with ρ = 5, K̄ = 1, σ̄2 = 2, T =
0.25, ymax = 30, κmax = 2, △t = 0.00005, h = 0.05. Left: µ̄ = 3. Right: µ̄ = 10. A
simple Euler scheme is used to simulate a scenario ω of the CIR process K. In the middle
plots, Kt(ω) is compared to the mean-reverting level K̄ = 1. At the bottom, the optimal
strategy for δ = 0, x = 100 and ω is compared to the constant liquidity strategy (dashed).
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Remark 3.3.1. (CIR: Situation at tN−1).
As in Remark 2.3.4, we can assume discrete trading time and explicitly state the
situation one instance before the end of the trading period. This yields the following
barrier for ã := e−ρ(tN−tN−1), b̃ := e−µ̄(tN−tN−1)

cN(tN−1, κ) =

{
1−ã

K̄(1−b̃)+κ(b̃−ã)
if K̄(1− b̃) + κ(b̃− ã) > 0

∞ otherwise

}
. (3.46)

Figure 3.8 illustrates the barrier cN(tN−1, ·). It is increasing for µ̄ > ρ and decreasing
for µ̄ < ρ. This is consistent with our results from Figure 3.7 and analytically confirms
the conjecture above, that the CIR process can lead to aggressive in the liquidity
behavior. See more details in the following proposition.

mu=rho

mu>rho

mu<rho

kappa

Barrier

Figure 3.8: Schematic illustration of the barrier cN (tN−1, ·) in the CIR case. We have

cN (tN−1, 0) =
1−ã

K̄(1−b̃)
and in case of µ̄ > ρ the barrier has an asymptote at κ = K̄ 1−b̃

b̃−ã
.

Proposition 3.3.2. (CIR: Aggressive/passive in the liquidity at tN−1 possible).
For µ̄ ≥ ρ, the trade ξNN−1(tN−1, δ, x, κ) is aggressive in the liquidity.

For µ̄ < ρ, the trade is aggressive in the liquidity for x
δ
≥ 1−2ã+b̃

K̄(1−b̃)
and passive in the

liquidity otherwise.

Proof. The first assertion follows from (3.46) and Proposition 2.3.7 a).
For µ̄ < ρ, i.e., ã < b̃, we get

cN (tN−1, κ) =
1− ã

K̄
(
1− b̃

)
+ κ

(
b̃− ã

) < 1− ã

K̄
(
1− b̃

) < 1− 2ã+ b̃

K̄
(
1− b̃

) ,

ξN−1 = max

{
0,
x− cN (tN−1, κ) δ

1 + κcN (tN−1, κ)

}
,

∂

∂κ
ξN−1 = −

(1− ã)
[(

1− b̃
)
K̄x−

(
1− 2ã+ b̃

)
δ
]

[(
1− b̃

)
K̄ +

(
1− 2ã+ b̃

)
κ
]2 for

x

δ
> cN (tN−1, κ) .
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Numerical cost comparison
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Figure 3.9: Value function at t = 0 and κ = K̄ = 1. The three lines correspond to σ̄2 = 0,
2 (dotted), 4 (dashed). All other parameters are chosen as in Figure 3.7 with µ̄ = 10.

After having a look at the WR-BR barrier and the corresponding optimal strategy, let
us now focus on the value function. Figure 3.9 compares markets that are assumed
to have different fluctuations in the order book height. It turns out that the total
expected costs are slightly decreasing in σ̄, i.e., it is beneficial to trade in markets with
high impact volatility. However, we cannot improve the visibility of this effect in the
figure, since µ̄K̄ > 2σ̄2 from Assumption SpecialCIR restricts our choice to σ̄2 smaller
than or equal to µ̄K̄

2
= 5. This problem also arises for other parameter choices, but the

monotonicity of the value function in σ̄ remains in all of these cases. This decrease of
the value function in σ̄ can heuristically be explained. The value function for constant
liquidity is increasing and concave in κ, as we have seen in Proposition 2.2.1 and 2.2.2.
For instance, let 0 < κ̌ < κ̂ and compare the costs, when Ks ≡ κ̌+κ̂

2
on [t, T ], to the

expected costs, when Ks ≡ κ̌ or κ̂ both with probability one half. Due to

UOW

(
t, δ, x,

κ̌+ κ̂

2

)
>

1

2

[
UOW (t, δ, x, κ̌) + UOW (t, δ, x, κ̂)

]
,

one is better off in the case with randomness, which is meant to correspond to the
high volatility case in Figure 3.9. We show in Lemma 3.3.5 that for δ = 0, the value
function is converging to zero as σ̄ → ∞.

We have set up our optimization problem by minimizing the expectation of the costs.
For the resulting optimal strategy, it is interesting to see what variance the costs have.
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In Figure 3.10, we show the numerically calculated cumulative distribution function
of the costs. We compare it to the cost distribution resulting from the numerically
calculated constant liquidity strategy and the reoptimized constant liquidity strategy.
By the reoptimized strategy, we mean the strategy that we get, when we calculate a
strategy from the constant liquidity barrier

c(t, κ) =
ρ(T − t) + 1

κ

using the actual, time-varying Kt. This corresponds to a trader, that believes in a
constant order-book, but readjusts the constant, each time he sees a change of the
order book height. His strategy will then be passive in the liquidity. Therefore, the
corresponding cost distribution has even more mass at high cost values than the static
constant liquidity strategy.
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Figure 3.10: We have chosen t = 0, δ = 0, x = 5, K0 = K̄, µ̄ = 10, σ̄2 = 4. All other
parameters are chosen as in Figure 3.7. Top: Illustration of the cumulative distribution
function for the costs resulting from 3000 scenarios of the CIR process. Middle: One generic
scenario for K. Bottom: The corresponding strategies. The numbers in the legend are the
costs for the shown scenario using the corresponding strategy.
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Analytical cost comparison

Consider a block-shaped limit order book market with K being a CIR process with
volatility σ̄ and constant resilience speed. We then want to compare the optimal
expected costs U σ̄(0, 0, x, κ) to the expected costs J σ̄(ΘOW ), when a trader applies the
optimal constant liquidity strategy. It turns out in Lemma 3.3.3, that we can explicitly
calculate J σ̄(ΘOW ), and that this term does not depend on the volatility. Afterwards,
we will see in Lemma 3.3.4, that we can use the results from the Euler-Lagrange
section to calculate U σ̄=0(0, 0, x, κ) analytically. Since we have numerically examined
in Figure 3.9, that U σ̄ is decreasing in σ̄, we then know that the explicitly known
term (J σ̄(ΘOW )−U σ̄=0) is a lower bound for the expected cost saving (J σ̄(ΘOW )−U σ̄).

Lemma 3.3.3. (CIR expected costs of constant liquidity strategy).
Let Assumption SpecialCIR hold. Denote by ΘOW ∈ A0(x) the strategy given in (2.3).
Then for all σ̄ ∈ [0,∞),

U σ̄ (0, 0, x, κ) ≤ J σ̄
(
0, 0,ΘOW , κ

)
(3.47)

=
κ (3µ̄+ 2ρ) + K̄ (µ̄− 2ρ+ 2µ̄ρT ) +

(
κ− K̄

)
(µ̄− 2ρ) e−µ̄T

2µ̄ (ρT + 2)2
x2.

In particular,
U σ̄
(
0, 0, x, K̄

)
≤ UOW

(
0, 0, x, K̄

)
. (3.48)

Proof. Since ΘOW is deterministic, we get

J σ̄
(
0, 0,ΘOW , κ

)
=

κ

2

(
△ΘOW

0

)2
+

∫

[0,T ]

E
[
DOW

s

]
dΘOW

s (3.49)

+

(
E
[
DOW

T

]
+

E [KT ]

2
△ΘOW

T

)
△ΘOW

T .

Hence, we need to calculate the expected price deviation, which results from ΘOW .
For s ∈ (0, T ], dynamic (1.7) yields

E
[
DOW

s

]
= κ△ΘOW

0 +

∫

[0,s)

E [Ku] dΘ
OW
u − ρ

∫

[0,s)

E
[
DOW

u

]
du.

That is E
[
DOW

s

]
satisfies the initial value ordinary differential equation

∂

∂s
E
[
DOW

s

]
=
(
K̄ +

(
κ− K̄

)
e−µ̄s

) ρx

ρT + 2
− ρE

[
DOW

s

]
, E

[
DOW

0+

]
= κ△ΘOW

0 .

It is solved by

E
[
DOW

s

]
=

(
κ− K̄

)
(µ̄e−ρs − ρe−µ̄s) + K̄ (µ̄− ρ)

(µ̄− ρ)(ρT + 2)
x.

Plugging this into equation (3.49) yields the assertion. Inequality (3.48) follows from
Proposition 2.2.2 and by setting κ = K̄ in (3.47).
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Lemma 3.3.4. (CIR value function for zero volatility).
Let Assumption SpecialCIR with σ̄ = 0 hold. Then

U σ̄=0 (0, 0, x, κ) ≥ κK̄µ̄

2K̄µ̄+ κρ log
(

(κ−K̄)(µ̄−2ρ)−2eµ̄T K̄ρ

µ̄(κ−K̄)−2κρ

)x2.

Equality applies for each of the following cases:

1. µ̄ ∈ (0, ρ] ∪ {2ρ}

2. µ̄ ∈ (ρ, 2ρ) and κ ≤ K̄

(
1 + 2

ρ2

µ̄(µ̄− 3ρ)

)−1

Proof. Recall Subsection 2.2.4, where we discussed closed form solutions of our problem
for deterministic K. Due to Assumption SpecialCIR, 2ρ ≥ µ̄ > 0. Hence, we can apply
Lemma 2.2.24 and thus

U σ̄=0(0, 0, x, κ) ≥
∫

[0,T ]

Ds
D′

s + ρDs

Ks
ds+

D2
0+

2K0
+
D2

T+ −D2
T

2KT
(3.50)

with Ds = DT+fs, fs =
K ′

s+ρKs

K ′
s+2ρKs

for s ∈ (0, T ] and

DT+ =

(∫

[0,T ]

f ′
s + ρfs
Ks

ds+
f0
κ

+
1− fT
KT

)−1

x.

Plugging all this into the right-hand side of (3.50) yields the desired inequality.

The additional assumptions in the lemma assure that the condition

f ′
s + ρfs = ρ

κ+ (eµ̄s − 1)K̄
((
κ− K̄

)
(µ̄− 2ρ)− 2eµ̄sρK̄

)2
{
2eµ̄sρ2K̄ + (κ− K̄)(µ̄− ρ)(µ̄− 2ρ)

}
≥ 0

is met on [0, T ]. Hence, Proposition 2.2.22 applies and this guarantees equality in (3.50).

Lemma 3.3.5. (CIR value function, asymptotics for high volatility).
Let Assumption SpecialCIR hold, but neglect the restriction µ̄K̄ > 2σ̄2. Then

δe−ρ(T−t)x ≤ lim
σ̄→∞

U σ̄(t, δ, x, κ) ≤ δx.

In particular,
lim
σ̄→∞

U σ̄(t, 0, x, κ) = 0.

Proof. Fix ǫ > 0 as well as (t, δ, x, κ) and define

τǫ := inf {s ∈ [t,∞)|Ks ≤ ǫ} .
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Choose Θǫ ∈ At(x) to be the strategy that unwinds the whole order at min(τǫ, T ), i.e.
for s ∈ [t, T ]

Θǫ
s := xI(τǫ∧T,T ](s), Θ

ǫ
T+ := x.

Then

U σ̄(t, δ, x, κ) ≤ J σ̄(t, δ,Θǫ, κ)

≤ E

[
I{τǫ≤T}

(
δ +

ǫ

2
x
)
x+ I{τǫ>T}

(
δ +

KT

2
x

)
x

]

≤
(
δ +

ǫ

2
x
)
x+ P [τǫ > T ] δ + E

[
KT I{τǫ>T}

] x2
2
.

In the following, we argue that the right-hand side converges to (δ + ǫ
2
x)x as σ̄ → ∞.

First of all, use Markov’s inequality and consider

P [τǫ > T ] = P

[
inf

s∈[t,T ]
Ks > ǫ

]
≤ E

[
infs∈[t,T ]Ks

]

ǫ
.

Jensen’s inequality yields

E

[
inf

s∈[t,T ]
Ks

]
≤
(
E

[
sup

s∈[t,T ]

qs

])−1

.

Together with our considerations from (2.39),

lim
σ̄→∞

P [τǫ > T ] = 0.

With dominated convergence, it also follows that

lim
σ̄→∞

E
[
KT I{τǫ>T}

]
= 0.

This result also holds for more general processes K that get arbitrary small as their
volatility gets large, in the sense that for all ǫ > 0

P

[
inf

s∈[t,T ]
Ks > ǫ

]

converges to zero as the volatility of K approaches infinity.
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Chapter 4

Stochastic resilience

Kyle (1985) distinguishes three aspects of liquidity in a market: Spread, market depth
and resilience. When liquidating a portfolio, we trade in one direction as argued in
Proposition 1.1.2. Therefore, we can ignore the spread in our modeling. So far, we have
analyzed the situation when the order book height, which corresponds to market depth,
is stochastic. For simplicity, we assumed the resilience speed ρ to be deterministic.
Let us now do it the other way around and thus do a first step towards a stochastic
resilience model. Thereby, we keep the market depth model simple by taking a linear
price impact with constant coefficient κ. But the crucial difference between modeling κ
stochastically versus ρ is, that the resilience speed is not observable, whereas one can
directly see the order book height in the market. Using the language of stochastic
filtering, this means that the signal, which is the resilience speed, cannot be measured
directly, but the best ask price At = Au

t +Dt can be used as an observation process to
have a partial measurement of the signal. One might wish to model stochastic resilience
by keeping the dynamics ofD with a fixed constant ρ as before, but adding a noise term.
Then the difficulty arises, that we cannot observe the noise of Au and D separately,
since we only monitor A in the market. Notice also that the observation process A
depends on the strategy of the large investor, which makes the whole consideration
rather complex.

It turns out that even the following simple model is astonishingly hard to treat. We
take the impact coefficient κ to be a positive constant. Call the total number of shares
to be traded x > 0. Furthermore, let ρ be a random variable, which is not time
dependent and only takes two values l, h with 0 < l < h (low, high). We guess an a
priori distribution of ρ with P[ρ = h] = r0 with a constant r0 ∈ (0, 1). For instance,
take r0 from historical data. Trading is allowed at three trading times t0 = 0, t1 = 1
and t2 = 2. The evolution of the observable best ask price is assumed to be

A0 = Au
0 ,

A1 = Au
1 + κξ0e

−ρ = (Au
0 +∆Au

1) + κξ0e
−ρ,

A2 = Au
2 + κξ0e

−2ρ + κξ1e
−ρ = (Au

0 +∆Au
1 +∆Au

2) + κξ0e
−2ρ + κξ1e

−ρ. (4.1)
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The increments of the unaffected best ask price are independent and normally dis-
tributed with zero mean and variance σ2. At time t1, we can observe A1, but not ∆A

u
1

and e−ρ individually. Nevertheless, we can use our information of A1 at t1 to update
our beliefs about the distribution of ρ. Using the normal density 1√

2πσ2
exp(− z2

2σ2 ) yields

r1 := P [ρ = h|F1]

=
r0P

[
∆Au

1 = A1 − A0 − κξ0e
−h
]

r0P [∆Au
1 = A1 − A0 − κξ0e−h] + (1− r0)P [∆Au

1 = A1 − A0 − κξ0e−l]

=
r0 exp

(
− 1

2σ2

[
A1 − A0 − κξ0e

−h
]2)

r0 exp
(
− 1

2σ2 [A1 − A0 − κξ0e−h]2
)
+ (1− r0) exp

(
− 1

2σ2 [A1 − A0 − κξ0e−l]2
) .

That is the conditional probability of a high resilience speed given A1 is a function of
the initial trade ξ0, A1, σ

2 and κ.

With this model in mind, we now proceed by a backward induction to compute the
optimal trades ξ∗n for n = 0, 1, 2. The aim is to then examine the dependence of the
optimal trade ξ∗n on the observation An. In case of a high observation of An, which
suggests ρ to be low, do we optimally trade more or less? This is the question we want
to answer. If ξ∗n is decreasing (increasing) in An, we say that our trade is aggressive in
the money (passive in the money).

Proposition 4.0.1. (Aggressive in the money).
For arbitrary ξ0 ∈ [0, x], ξ∗2 = x− ξ0 − ξ∗1 with

ξ∗1
(
ξ0, A1, σ

2, κ
)
=

1

2

(
x− ξ0

r1 (ξ0, A1, σ
2, κ) e−2h + (1− r1 (ξ0, A1, σ

2, κ)) e−2l − 1

r1 (ξ0, A1, σ2, κ) e−h + (1− r1 (ξ0, A1, σ2, κ)) e−l − 1

)
.

Since ξ∗1 is decreasing in A1, this corresponds to a trade which is aggressive in the
money.

Proof. For a given initial trade ξ0, minimize the expected cost from trading ξ1 shares
at t1 and x− ξ0 − ξ1 shares at t2 with respect to ξ1, i.e., consider

J (ξ1) := E

[
ξ1

(
A1 +

κ

2
ξ1

)
+ (x− ξ0 − ξ1)

(
A2 +

κ

2
(x− ξ0 − ξ1)

) ∣∣∣F1

]
.

Except of A2, all terms are F1-measurable. From (4.1),

E[A2|F1] = A1 + r1κ
[
ξ0(e

−2h − e−h) + ξ1e
−h
]
+ (1− r1)κ

[
ξ0(e

−2l − e−l) + ξ1e
−l
]
.

Plugging this into J , we get ξ∗1 by a straightforward calculation. Hence,

∂

∂A1

ξ∗1 = −
r0
2σ2 ξ

2
0(1− r0)(e

h − 1)(el − 1)(eh − el)2e−(h+l)

2eh+l(eh − 1)(el − 1)(1− r0)r0 + f̃(h, l)(1− r0)2 + f̃(l, h)r20
< 0 with

f̃(a, b) := exp

{
2a+

(A0 − A1 + κξ0e
−a)

2 −
(
A0 − A1 + κξ0e

−b
)2

2σ2

}
(eb − 1)2.
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Figure 4.1: Dependence of ξ∗1 on the observable price increment A1−A0 for x = 100, r0 =
1
2 ,

κ = 1, σ2 = 1, h = 5 and ξ0 = 0, 20, 40, 60 top-down. Left: l = 2. Right: l = 1
2 .

Figure 4.1 illustrates the statement of Proposition 4.0.1. The main aspect to notice is
that the optimal strategy is stochastic, in the sense that it reacts to the price move-
ment A1 − A0. More precisely, ξ∗1 is aggressive in the money. This effect is more pro-
nounced the higher we choose ξ0. It is not obvious, how to get the optimal trade ξ∗0 in
closed form. Therefore, we discuss the properties of ξ∗1 for arbitrary values of ξ0 ∈ [0, x].

We have ξ∗1(0, A1, σ
2, κ) ≡ 1

2
x, which is intuitively clear, since A1 does not give any

information about ρ if we have not traded at t0. At the same time, if the variance of the
unaffected best ask price σ2 rises, a small movement A1−A0 in price is less informative
with respect to the resilience. Therefore, it takes higher amplitudes of A1 − A0 to see
significant differences in ξ∗1 . This is illustrated in Figure 4.2.
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Figure 4.2: Dependence of ξ∗1 on the observable price increment A1 −A0 for parameters as
in Figure 4.1 with l = 1

2 . Left: σ2 = 100. Right: σ2 = 1.

Since limA1→∞ r1(ξ0, A1, σ
2, κ) = 0 and limA1→−∞ r1(ξ0, A1, σ

2, κ) = 1 respectively,

∆ξ∗1 := lim
A1→−∞

ξ∗1
(
ξ0, A1, σ

2, κ
)
− lim

A1→∞
ξ∗1
(
ξ0, A1, σ

2, κ
)
=

1

2
ξ0

(
e−2l − 1

e−l − 1
− e−2h − 1

e−h − 1

)
.

Note that the function

g(z) :=
e−2z − 1

e−z − 1

is strictly decreasing on [0,∞) with limz→0 g(z) = 2 as well as limz→∞ g(z) = 1. This
leads to ∆ξ∗1 to be positive and smaller than 1

2
ξ0. The function g is particularly steep

for small values of z. Therefore, the trade ξ∗1 is particularly sensitive with respect to A1

(measured by ∆ξ∗1) in situations, where the estimations h and l for the resilience lie far
apart from each other and l is quite low.
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Finally, imagine a trader who speculates if and how his trades should react to changes
in the price because they might tell him something about the actual resilience. Then
our model suggests, that he actually should react to these price changes. Namely, he
should behave aggressive in the money. How quantitatively pronounced this behavior
should be, depends highly on the estimation of the resilience (the values h and l) done
by the trader.

As we have seen, the optimal execution problem with stochastic resilience is interesting
from a practical point of view and at the same time, it is mathematically challenging
due to the involved filtering. Therefore, an expanded model with more than three
trading instances seems to be a promising topic for future research.
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