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Abstrat

In �nanial markets, liquidity hanges randomly over time. We onsider suh random variations

of the depth of the order book and evaluate their in�uene on optimal trade exeution strategies.

If the stohasti struture of liquidity hanges satis�es ertain onditions, then the unique optimal

trading strategy exhibits a onventional struture with a single wait region and a single buy region

and pro�table round trip strategies annot exist. In other ases, optimal strategies an feature

multiple wait regions and optimal trade sizes that an be dereasing in the size of the position to

be liquidated. Furthermore round trip strategies an be pro�table depending on bid-o�er spread

assumptions. We illustrate our �ndings with several examples inluding the CIR model for the

evolution of liquidity.

KEYWORDS: Market impat model, optimal order exeution, limit order book, resiliene, time-

varying liquidity, pro�table round trip trading strategies

1 Introdution

Liquidity is not onstant throughout the day, but instead varies over time. Traders ative in a

market are typially expeted to ontinuously observe these hanges in liquidity and adjust their

trades aordingly. Some part of the liquidity hanges is driven by deterministi hanges in expeted

liquidity levels, e.g., daily and weekly patterns as well as expeted hanges around important points

in time suh as news releases. These expeted hanges however do not explain liquidity variation

fully. An unpredited omponent of liquidity hanges remains whih an dominate the deterministi

omponent.

We extend existing limit order book models and introdue a stohasti depth of the order book. In

this market, we onsider an investor who wants to purhase a large asset position. If the order book

dynamis are driven by a general di�usion satisfying ertain onditions, then we prove existene and

uniqueness of the optimal trade exeution strategy. This trading strategy exhibits a wait region / buy

region struture with a single wait region and a single buy region. If the investor �nds herself in the

wait region at a given point in time, then she does not plae any orders at this point; if she is in the

buy region, then the investor buys just enough to bring her position from within the buy region to

the boundary of the wait region.
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If limit order book depth is not driven by a di�usion satisfying said onditions, then the lassial wait

region / buy region struture with one region eah does not need to hold. While optimal strategies

may still be desribed in terms of wait and buy regions, there an be more than one of these regions.

We provide several examples with suh non-standard optimal trading strategies. Intuitively expeted

features do not need to hold any more. For example, the trade size at a given point in time an vary

non-monotonially with the size of the remaining position: if a large or small position remains, then

no order is plaed, however a purhase order is plaed if the remaining position is of medium size.

To the best of our knowledge, a nonintuitive struture of suh type in solutions of Markovian ontrol

problems was never observed in the literature.

The ondition ensuring wait region / buy region struture also guarantees that round trip trading

strategies annot be pro�table. If the ondition is violated, then round trip strategies an generate

pro�ts if the bid-o�er spread is assumed to be zero; if a dynami spread is assumed, then pro�ts from

round trip strategies remain unavailable.

The majority of the optimal trade exeution literature onsiders one of two di�erent market models.

First, several models assume an instantaneous temporary prie impat, e.g., Almgren and Chriss

(2001) and Almgren (2003). In these models, the temporary prie impat at time t is independent
of all orders exeuted at time prior to t and does not in�uene any order at a time after t, whih
greatly simpli�es the analysis. Cheridito and Sepin (2014) and Almgren (2012) have studied stohasti

temporary prie impat in this setting and provide numerial methods for alulation of the optimal

strategy and value funtion. In a seond group of models, inspired by a limit order book interpretation,

resiliene is �nite and depth and resiliene are separately modelled. Our model falls into this seond

group. Due to the �nite resiliene of the order book, the exeution prie at time t is in�uened by

orders �lled at times prior to t, and the exeution at time t in turn in�uenes the exeution prie of

subsequent orders. Most of the existing literature assumes the liquidity parameters to be onstant over

time, see, e.g., Bouhaud, Gefen, Potters, and Wyart (2004), Obizhaeva and Wang (2013), Alfonsi,

Fruth, and Shied (2010) and Predoiu, Shaikhet, and Shreve (2011). Alfonsi and Aevedo (2014),

Bank and Fruth (2014) and Fruth, Shöneborn, and Urusov (2014) allow for deterministi hanges in

liquidity and are therefore losely related to our paper. Let us, however, point out that this paper is

qualitatively di�erent from the aforementioned papers, and the main di�erenes are as follows. Due to

the stohastiity in the depth of the order book, the optimal exeution strategies in the framework of

this paper are no longer deterministi (the latter was the ase in the aforementioned group of papers).

More surprisingly, the ounterexamples to the wait region / buy region struture mentioned above

appear in the framework of our present paper only. To the best of our knowledge, Chen, Kou, and

Wang (2015) is the only paper onsidering stohastially varying limit order book depth. They provide

a numerial method for alulation of the optimal strategy and value funtion in disrete time with the

depth of the limit order book driven by a disrete Markov hain. In ontrast, we fous on analytial

results in a ontinuous time setting with limit order book depth following a di�usive proess.

Starting with Huberman and Stanzl (2004), pro�table round trip strategies haven been studied in a

variety of market models by Gatheral (2010), Alfonsi, Shied, and Slynko (2012) and Klök, Shied,

and Sun (2014) among others. To the best of our knowledge, all existing literature on this topi

assumes deterministi liquidity.

The remainder of this paper is strutured as follows. In Setion 2, we introdue a limit order book

model with stohasti depth and derive basi strutural features in Setion 3. We prove existene

and uniqueness of optimal strategies as well as the wait region / buy region struture in Setion 4

as long as the stohasti dynamis of the limit order book depth obeys ertain onditions. We apply

these results to several examples of di�usive proesses in Setion 5. If the onditions of Setion 4

are violated, then the optimal strategy does not need to be of wait region / buy region struture any

more as we demonstrate in several examples in Setion 6. In Setion 7, we extend our model to two

sided limit order books and investigate the returns of round trip trading strategies. We onlude in

Setion 8.
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2 Model desription

A limit order book model with time dependent depth was introdued in Fruth, Shöneborn, and Urusov

(2014). In this previous paper we explain the model in depth and provide an eonomi motivation.

In the following, we reapitulate the entral omponents and notation and extend the model from

deterministi order book depth to stohasti order book depth.

The model is built on a �ltered probability spae (Ω,F , (Fs)s∈[0,T ],P). As usual in dynami program-

ming we onsider a general initial time t ∈ [0, T ] below. For the evolution of the trader's asset position

over time interval [t, T ], we onsider the set of admissible ontinuous-time inreasing strategies

Acts
t :=

{

Θ: Ω× [t, T+] → [0,∞) |

(Fs)− adapted, inreasing, bounded, àglàd with Θt = 0
}

and denote ξs := ∆Θs := Θs+ − Θs. In partiular, absolutely ontinuous trading as well as impulse

trades are allowed. A strategy from Acts
t onsists of a left-ontinuous proess (Θs)s∈[t,T ] and an

additional random variable ΘT+ with ∆ΘT = ΘT+ − ΘT ≥ 0 being the last trade of the strategy.

Let us emphasize that admissible strategies are bounded by de�nition, that is, for Θ ∈ Acts
t , we have

ΘT+ ≤ const < ∞ a.s. (the onstant depends on a strategy). Denote by

Acts
t (x) :=

{

Θ ∈ Acts
t | ΘT+ = x a.s.

}

(1)

the admissible strategies that build up a position of x ∈ [0,∞) shares until time T almost surely. For

the majority of this paper, we onsider only one side of the limit order book (namely, the buy side)

and hene only inlude inreasing strategies in Acts
t . As we will see in Setion 7, selling annot redue

overall purhase osts if the bid-o�er spread is in�uened by the trader.

In addition to ontinuous time, we will also onsider trading in disrete time, i.e., at times

0 = t0 < t1 < ... < tN = T.

In this ase, we onstrain our admissible strategy set to

Adis
t :=

{

Θ ∈ Acts
t | Θs = 0 on [t, tñ(t)] and

Θs = Θtn+ a.s. on (tn, tn+1) for n = ñ(t), ..., N − 1
}

⊂ Acts
t

with ñ(t) := inf{n = 0, ..., N | tn ≥ t} and de�ne

Adis
t (x) :=

{

Θ ∈ Adis
t | ΘT+ = x a.s.

}

as the disrete analogue to Acts
t (x).

Let D be the prie impat proess, i.e. the deviation of the urrent ask prie from its steady state

level, K the illiquidity proess, and ρ the (time-varying) resiliene speed.

Standing Assumption.

(i) K is a (possibly time-inhomogeneous) (Fs)-Markov proess with state spae (0,∞) and �nite �rst

moments.

(ii) ρ : [0, T ] → (0,∞) is a stritly positive Lebesgue-integrable deterministi funtion.

The deviation Ds results from past trades on [t, s) in the following way

dDs = −ρsDsds+KsdΘs, Dt = δ. (2)

That is, for s ∈ [t, T ],

Ds =

∫

[t,s)

Kue
−

∫

s

u
ρrdrdΘu + δe−

∫

s

t
ρudu

(3)
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and, taking into aount the last trade ∆ΘT ,

DT+ =

∫

[t,T ]

Kue
−

∫

T

u
ρrdrdΘu + δe−

∫

T

t
ρudu. (4)

The proess K desribes the externally given dynamis of the order book depth q := 1/K, while D
represents the movement of the order book blok due to the trades of the large investor and the

resiliene e�et.

For any �xed t ∈ [0, T ], δ ≥ 0 and κ > 0, we de�ne the ost funtion J(t, δ, ·, κ) : Acts
t → [0,∞] as1

J(Θ) := J(t, δ,Θ, κ) := Et,δ,κ

[

∫

[t,T ]

(

Ds +
Ks

2
∆Θs

)

dΘs

]

, (5)

i.e., the expeted liquidity ost on the time interval [t, T ] when Dt = δ and Kt = κ. While we do

not exlude the possibility of an in�nite ost of a strategy Θ ∈ Acts
t , it is worth noting that, for any

Θ ∈ Adis
t , the ost is �nite due to our standing assumption. Starting with (5) we meet the following

notational onvention, whih will be used throughout the paper: Pt,κ is the probability measure under

whih the Markov proess K starts at time t from κ, Et,κ is the expetation under Pt,κ, and we write

Et,δ,κ for the expetation when the expression ontains the proess D and the starting point at time t
in (2) is δ.

Let us now de�ne our value funtion for ontinuous trading time U cts : [0, T ]×[0,∞)2×(0,∞) → [0,∞)
as

U cts(t, δ, x, κ) := inf
Θ∈Acts

t (x)
J(t, δ,Θ, κ) (6)

and the value funtion for disrete trading time as

Udis(t, δ, x, κ) := inf
Θ∈Adis

t (x)
J(t, δ,Θ, κ) ≥ U cts(t, δ, x, κ). (7)

Denoting ξn := ξtn = ∆Θtn , we an also write the disrete time ost integral as a sum

Udis(t, δ, x, κ) = inf
Θ∈Adis

t (x)
Et,δ,κ





∑

tn≥t

(

Dtn +
Ktn

2
ξn

)

ξn



 . (8)

Both value funtions U = U cts
and U = Udis

ful�l the boundary onditions

U(T, δ, x, κ) =
(

δ +
κ

2
x
)

x and U(t, δ, 0, κ) = 0. (9)

Going forward we will use U and At(x) as a notation to indiate that the orresponding statement

holds for both the ontinuous and disrete time ase. If a ertain statement is referring to only one

setting, then we will expliitly use U cts
and Acts

t (x) respetively Udis
and Adis

t (x).

1

Let us brie�y reall how the right-hand side of (5) omes into play. Let the best ask prie proess (As) be modelled

as As = Au
s +Ds, where the una�eted best ask prie (Au

s ) is a àdlàg H1
-martingale. Then, given that the limit order

book has the blok form, the total ost of a strategy Θ ∈ Acts
t (x) is

∫

[t,T ]

(

As + Ks

2
∆Θs

)

dΘs. A alulation involving

integration by parts reveals that the expeted total ost equals

Et,δ,κ [Au
TΘT+] + Et,δ,κ

[

∫

[t,T ]

(

Ds +
Ks

2
∆Θs

)

dΘs

]

= Au
t x+ J(t, δ,Θ, κ)

with J(t, δ,Θ, κ) given by (5) (notie that Et,δ,κ

∫

[t,T ]
Θs dA

u
s = 0 beause Au

is an H1
-martingale and Θ is bounded).

The �rst summand in the latter formula desribes the expeted ost that ours due to trading in the una�eted prie.

This ost depends on the strategy Θ ∈ Acts
t (x) only through the total number of shares x that the strategy aquires,

and, due to the martingale property of Au
, the expression is trivial: the initial prie times the number of shares. The

seond summand in the latter formula desribes the expeted liquidity ost, whih ours due to prie impat. This

ost signi�antly depends on the strategy and is the objet of our study.
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The following simple result is realled from Fruth, Shöneborn, and Urusov (2014). It shows that our

formulas for the prie impat and for the ost are eonomially sensible. This result will be essential

below.

Lemma 2.1 (Splitting argument).

Doing two separate trades ξα, ξβ > 0 at the same time s has the same e�et as trading at one

ξ := ξα + ξβ, i.e. both alternatives inur the same ost and the same prie deviation Ds+.

Proof. The ost is in both ases

(

Ds +
Ks

2
ξ

)

ξ = Ds(ξα + ξβ) +
Ks

2
(ξ2α + 2ξαξβ + ξ2β)

=

(

Ds +
Ks

2
ξα

)

ξα +

(

Ds +Ksξα +
Ks

2
ξβ

)

ξβ

and the prie deviation Ds+ = Ds +Ks(ξα + ξβ) after the trade is the same in both ases as well.

Finally, let us relate the setting in this paper with that in Fruth, Shöneborn, and Urusov (2014). To

this end, let the illiquidity oe�ient be desribed by a deterministi stritly positive Borel funtion

k : [0, T ] → (0,∞). We introdue the ost and the value funtions

Jk(·)(Θ) (≡ Jk(·)(t, δ,Θ)), U cts
k(·)(t, δ, x), Udis

k(·)(t, δ, x)

similarly to (5)�(8) using the illiquidity k in plae of K. These are the orresponding ost and value

funtions in Fruth, Shöneborn, and Urusov (2014) (notie that in this ase, sine k is deterministi,

the in�ma over deterministi and adapted strategies oinide). Again, we will use just the notation

Uk(·) to indiate that the orresponding statement holds for both the ontinuous and disrete time ase.

The following lemma is sometimes useful for performing omparisons with the ase of deterministially

hanging illiquidity.

Lemma 2.2 (Stohasti versus deterministi illiquidity).

For all t ∈ [0, T ], δ ≥ 0, x ≥ 0, κ > 0, we have

U(t, δ, x, κ) ≤ UEt,κ[K(·)](t, δ, x).

Proof. U(t, δ, x, κ) is smaller than or equal to the in�mum like the one in (6) respetively (7), but over

deterministi strategies. The latter in�mum equals UEt,κ[K(·)](t, δ, x) due to (3) and (5).

3 De�nition of WR-BR struture

In this setion we de�ne the WR-BR struture (WR: wait region, BR: buy region) and derive funda-

mental properties. A detailed introdution of the WR-BR struture is provided by Fruth, Shöneborn,

and Urusov (2014); we therefore keep the exposition brief in this setion. In partiular, we do not

prove Proposition 3.2 below, sine the proof is similar to the orresponding proof in the aforementioned

paper.

Before attaking the formal de�nition of WR-BR struture, we note that the four-dimensional value

funtion U an be redued by one dimension due to the following saling property (its proof is straight-

forward).

Lemma 3.1 (Optimal strategies sale linearly).

For all a ∈ [0,∞) we have

U(t, aδ, ax, κ) = a2U(t, δ, x, κ). (10)

Furthermore, if Θ∗ ∈ At(x) is optimal for U(t, δ, x, κ), then aΘ∗ ∈ At(ax) is optimal for U(t, aδ, ax, κ).
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We will also need two useful results:

Proposition 3.2 (Continuity of the value funtion).

For eah t ∈ [0, T ] and κ > 0, the funtion

U(t, ·, ·, κ) : [0,∞)2 → [0,∞)

is ontinuous.

Proposition 3.3 (Trading never ompletes early).

For all t ∈ [0, T ), δ ≥ 0, x > 0 and κ > 0, the value funtion satis�es

U(t, δ, x, κ) <
(

δ +
κ

2
x
)

x,

i.e. it is never optimal to buy the whole remaining position at any time t ∈ [0, T ).

Proof. The result immediately follows from Lemma 2.2 and the orresponding result for determinis-

tially varying K, see Proposition 5.6 in Fruth, Shöneborn, and Urusov (2014).

For δ > 0, we an take a = 1
δ
and apply Lemma 3.1 to get

U(t, δ, x, κ) = δ2U
(

t, 1,
x

δ
, κ
)

= δ2V (t, y, κ) with (11)

y :=
x

δ
,

V (t, y, κ) := U(t, 1, y, κ), V (T, y, κ) = y +
κ

2
y2, V (t, 0, κ) ≡ 0.

Going forward we will use V cts
and V dis

where we need to di�erentiate between ontinuous and disrete

time settings. We now see that the funtion U(t, δfix, x, κ) for some δfix > 0 or U(t, δ, xfix, κ) for
some xfix > 0 already determines the entire value funtion. In the following we will often analyze

the funtion V in order to derive the properties of U . Tehnially this does not diretly allow us to

draw onlusions for U(t, 0, x, κ), sine, for δ = 0, the ratio y = x/δ is not de�ned. The extension

of our proofs to allow the possibility δ = 0 is however straightforward by a ontinuity argument (see

Proposition 3.2).

We �rst de�ne the buy and wait region and subsequently de�ne the barrier funtion.

De�nition 3.4 (Buy and wait region).

For any t ∈ [0, T ] and κ > 0, we de�ne the inner buy region as

Brt,κ :=
{

y ∈ (0,∞) | ∃ξ ∈ (0, y) : U(t, 1, y, κ) = U (t, 1 + κξ, y − ξ, κ) +
(

1 +
κ

2
ξ
)

ξ
}

,

and all the following sets the buy region and wait region at time t for the illiquidity oe�ient κ:

BRt,κ := Brt,κ, WRt,κ := [0,∞) \Brt,κ

(the bar indiates losure in R).

The inner buy region at time t for illiquidity oe�ient κ hene onsists of all values y suh that

immediate buying at the state (1, y) is value preserving. The wait region on the other hand ontains

all values y suh that any non-zero purhase at (1, y) destroys value. Let us note that BrT,κ = (0,∞),
BRT,κ = [0,∞) and WRT,κ = {0}. The wait region / buy region onjeture an now be formalized

as follows.
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De�nition 3.5 (WR-BR struture).

The value funtion U has WR-BR struture if there exists a barrier funtion

c : [0, T ]× (0,∞) → [0,∞]

suh that for all t ∈ [0, T ] and κ > 0,

Brt,κ = (c(t, κ),∞)

with the onvention (∞,∞) := ∅. For the value funtion Udis
in disrete time to have WR-BR

struture, we only onsider t ∈ {t0, ..., tN} and set cdis(t, κ) = ∞ for t /∈ {t0, ..., tN}.

It is worth noting that the barrier an be in�nite even in ontinuous time or in disrete time at time

points t0, . . . , tN−1, that is, there an be ertain t and κ, for whih it is never optimal to perform a

blok trade, regardless of how large the remaining position is. We refer to Propositions 5.8 and 5.9

in Fruth, Shöneborn, and Urusov (2014) for su�ient onditions for in�nite barrier in the ase of

deterministially varying K.

Let us remark that we always have c(T, κ) = 0. On the ontrary, the barrier is always stritly positive

for t ∈ [0, T ) (whenever the value funtion U has WR-BR struture):

Proposition 3.6 (Wait region near zero).

Assume that the value funtion U has WR-BR struture with the barrier c. Then, for any t ∈ [0, T )
and κ > 0, we have c(t, κ) ∈ (0,∞].

Proof. Assume that for some t ∈ [0, T ) and κ > 0 we have c(t, κ) = 0. Let us �x some y > 0 and

de�ne

ξ̄ := sup
{

ξ ∈ (0, y) | U(t, 1, y, κ) = U(t, 1 + κξ, y − ξ, κ) +
(

1 +
κ

2
ξ
)

ξ
}

≤ y.

Sine U(t, ·, ·, κ) is ontinuous (Proposition 3.2), we get

U(t, 1, y, κ) = U(t, 1 + κξ̄, y − ξ̄, κ) +
(

1 +
κ

2
ξ̄
)

ξ̄. (12)

If ξ̄ < y, then, due to the saling property of Lemma 3.1, the fat that (y − ξ̄)/(1 + κξ̄) ∈ Brt,κ,
and the splitting argument of Lemma 2.1, we arrive at a ontradition with the de�nition of ξ̄. Thus,
ξ̄ = y, but then formula (12) ontradits Proposition 3.3. This ompletes the proof.

The following proposition haraterizes the WR-BR struture and will be needed for some of our main

results.

Proposition 3.7. (WR-BR struture is equivalent to trading towards the barrier).

Assume that for eah (t, δ, x, κ) there exists a unique optimal strategy

(Θ∗
s(t, δ, x, κ))s∈[t,T ] ∈ At(x).

Then the following statements are equivalent.

(a) The value funtion has WR-BR struture.

(b) There exists c : [0, T )× (0,∞) → (0,∞] suh that for all (t, δ, x, κ)

∆Θ∗
t (t, δ, x, κ) = max

{

0,
x− c(t, κ)δ

1 + κc(t, κ)

}

. (13)

In partiular, ∆Θ∗
t (t, δ, x, κ) is ontinuous in δ and x.

() For all (t, δ, κ), the funtion x 7→ ∆Θ∗
t (t, δ, x, κ) is inreasing.
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Proof. First we prove the equivalene of (a) and (b). Statement () follows immediately from (b). We

onlude by showing that () implies (b). The saling property (Lemma 3.1) yields

∆Θ∗
t (t, δ, x, κ) = δ∆Θ∗

t

(

t, 1,
x

δ
, κ
)

.

Therefore we only need to disuss the ase δ = 1. Fix arbitrary t ∈ [0, T ], κ ∈ (0,∞).

(a) ⇒ (b) The assertion holds for x = 0. Assume x ∈ (0, c(t, κ)]. Then the WR-BR struture implies

that for all ξ ∈ (0, x)

U(t, 1, x, κ) < U (t, 1 + κξ, x− ξ, κ) +
(

1 +
κ

2
ξ
)

ξ.

Therefore it annot be optimal to trade immediately at time t.

Assume c(t, κ) < ∞ and x ∈ (c(t, κ),∞). Then the WR-BR struture implies that there

exists ξ̃ ∈ (0, x) suh that

U(t, 1, x, κ) = U
(

t, 1 + κξ̃, x− ξ̃, κ
)

+
(

1 +
κ

2
ξ̃
)

ξ̃.

Due to the uniqueness of the optimal strategy, we get

∆Θ∗
t (t, 1, x, κ) = ξ̃ +∆Θ∗

t

(

t, 1 + κξ̃, x− ξ̃, κ
)

> 0.

For ξ̃ < x−c(t,κ)
1+κc(t,κ) , we have

x−ξ̃

1+κξ̃
> c(t, κ) and thus

∆Θ∗
t

(

t, 1 + κξ̃, x− ξ̃, κ
)

> 0.

Consequently, ∆Θ∗
t (t, 1, x, κ) ≥ x−c(t,κ)

1+κc(t,κ) . Two trades exeuted immediately after eah other

have the same e�et as one trade of their ombined size (see Lemma 2.1). Due to this splitting

argument, we have

∆Θ∗
t (t, 1, x, κ) =

x− c(t, κ)

1 + κc(t, κ)
+ ∆Θ∗

t

(

t, 1 + κ
x− c(t, κ)

1 + κc(t, κ)
, x−

x− c(t, κ)

1 + κc(t, κ)
, κ

)

.

Observe that the seond summand equals zero beause

x− x−c(t,κ)
1+κc(t,κ)

1 + κ x−c(t,κ)
1+κc(t,κ)

= c(t, κ).

(b) ⇒ (a) Assume x ∈ (0, c(t, κ)]. Then (13) implies ∆Θ∗
t (t, 1, x, κ) = 0. Together with the unique-

ness of the optimal strategy we an therefore onlude that x /∈ Brt,κ, sine for all ξ ∈ (0, x)

U(t, 1, x, κ) < U (t, 1 + κξ, x− ξ, κ) +
(

1 +
κ

2
ξ
)

ξ.

Assume c(t, κ) < ∞ and x ∈ (c(t, κ),∞). Then (13) implies

∆Θ∗
t (t, 1, x, κ) ∈ (0, x).

The optimality of Θ∗
leads to the onlusion x ∈ Brt,κ sine

U(t, 1, x, κ) = U (t, 1 + κ∆Θ∗
t (t, 1, x, κ), x−∆Θ∗

t (t, 1, x, κ), κ)

+
(

1 +
κ

2
∆Θ∗

t (t, 1, x, κ)
)

∆Θ∗
t (t, 1, x, κ).
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() ⇒ (b) De�ne

c(t, κ) := inf {x ∈ (0,∞)|∆Θ∗
t (t, 1, x, κ) > 0} .

We are done for c(t, κ) = ∞. Let c(t, κ) < ∞. Then the de�nition of c(t, κ) guarantees

∆Θ∗
t (t, 1, x, κ) = 0 for all x < c(t, κ), and Property () implies ∆Θ∗

t (t, 1, x, κ) > 0 for all

x > c(t, κ). Suppose for a ontradition that

∆Θ∗
t (t, 1, c(t, κ), κ) > 0.

Due to the uniqueness and the splitting argument, we then have, for ǫ ∈ (0,∆Θ∗
t (t, 1, c(t, κ), κ)),

∆Θ∗
t (t, 1, c(t, κ), κ) = ǫ+∆Θ∗

t (t, 1 + κǫ, c(t, κ)− ǫ, κ) = ǫ < ∆Θ∗
t (t, 1, c(t, κ), κ) .

Therefore, ∆Θ∗
t (t, 1, x, κ) = 0 for all x ≤ c(t, κ).

We still need to prove ∆Θ∗
t (t, 1, x, κ) = x−c(t,κ)

1+κc(t,κ) for x > c(t, κ). Let us �rst assume that

∆Θ∗
t (t, 1, x, κ) >

x−c(t,κ)
1+κc(t,κ) . One more, we make use of the uniqueness and the splitting argument

in order to get a ontradition

∆Θ∗
t (t, 1, x, κ) =

x− c(t, κ)

1 + κc(t, κ)
+ ∆Θ∗

t

(

t, 1 + κ
x− c(t, κ)

1 + κc(t, κ)
, x−

x− c(t, κ)

1 + κc(t, κ)
, κ

)

=
x− c(t, κ)

1 + κc(t, κ)
< ∆Θ∗

t (t, 1, x, κ).

Finally, assume ∆Θ∗
t (t, 1, x, κ) <

x−c(t,κ)
1+κc(t,κ) . That is,

x−∆Θ∗
t (t,1,x,κ)

1+κ∆Θ∗
t (t,1,x,κ)

> c(t, κ) and we again arrive

at a ontradition:

∆Θ∗
t (t, 1, x, κ) = ∆Θ∗

t (t, 1, x, κ) + ∆Θ∗
t

(

t, 1 + κ∆Θ∗
t (t, 1, x, κ), x−∆Θ∗

t (t, 1, x, κ), κ
)

> ∆Θ∗
t (t, 1, x, κ).

4 The WR-BR theorem

In this setion we show that the value funtion exhibits WR-BR struture if K is a di�usion satisfying

the following assumption.

Assumption 4.1. (Speial di�usion).

K is a (possibly time-inhomogeneous) di�usion

dKs = µ(s,Ks) ds+ σ(s,Ks) dW
K
s , Kt = κ > 0, (14)

for an (Fs)-Brownian motionWK
and µ, σ : [0, T ]×(0,∞) → R suh that, for any initial time t ∈ [0, T ]

and starting point Kt = κ > 0, the stohasti di�erential equation has a weak solution whih is unique

in law, is stritly positive and has �nite �rst moments. Furthermore, for all t ∈ [0, T ] and κ > 0, we
have

i) ηs :=
2ρs

Ks
+ µ(s,Ks)

K2
s

− σ2(s,Ks)
K3

s
> 0 Pt,κ×µL-a.e. on Ω× [t, T ] (µL denotes the Lebesgue measure),

ii) Et,κ

[

sups∈[t,T ] K
2
s

infs∈[t,T ] Ks

]

< ∞,

iii) Et,κ

[(

∫ T

0
|ηs| ds

)(

sups∈[t,T ] K
2
s

)]

< ∞.
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In Setion 7 below we study pro�table round trip strategies without assuming that the proess η is

positive, but we will need part iii) of Assumption 4.1. That is why we write absolute value of η in iii).

Theorem 4.2. (WR-BR theorem).

If Assumption 4.1 holds, then there is a unique optimal strategy, and we have WR-BR struture.

In fat, we will see in the proof that existene and uniqueness of the optimal strategy both in dis-

rete and ontinuous time as well as WR-BR struture in disrete time hold under parts i)�ii) of

Assumption 4.1. We need part iii) only for WR-BR struture in ontinuous time.

We prove Theorem 4.2 in two steps. In Subsetion 4.1, we show that Assumption 4.1 ensures strit

onvexity of the ost funtional J in the strategy, whih in turn guarantees existene and uniqueness

of the optimal strategy. As we show in Subsetion 4.2, the uniqueness exludes WR-BR-WR and

other situations: at any upper boundary of a buy region it must be equally optimal to wait as it is to

exeute the stritly positive trade to the lower boundary of the buy region. We �rst pursue this line

of argument for the disrete time ase and then transfer it to ontinuous time and thus do not use the

Hamilton-Jaobi-Bellman equation.

Part i) of Assumption 4.1 is the most ritial in the proof sine it is diretly linked to the onvexity

of J . As we will see in Setion 7, it is also related to the absene of pro�table round trip trading

strategies in a two-sided order book model. Parts ii) and iii) of Assumption 4.1 are required for more

tehnial aspets of our proof.

Theorem 4.2 does not over all models whih result in a WR-BR struture.

2

In Setion 6 we provide

examples violating the WR-BR struture, highlighting that some assumptions on K are neessary to

guarantee a WR-BR struture.

4.1 Existene of a unique optimal strategy

Under Assumption 4.1, we show in Lemma 4.3 that J(Θ) is stritly onvex. This guarantees the

uniqueness of an optimal strategy provided it exists. We an then use the onvexity together with the

Komlós theorem to �nally get the existene of an optimal strategy in Proposition 4.4.

Lemma 4.3. (Costs are onvex in the strategy).

Let Assumption 4.1 hold. Then, for all t ∈ [0, T ], δ ≥ 0 and κ > 0, the funtion J(·) ≡ J(t, δ, ·, κ) is
�nite and stritly onvex on At.

Proof. Let t, δ and κ be �xed. Clearly, Assumption 4.1 ii) implies Et,κ sups∈[t,T ] Ks < ∞, hene J(·)
is �nite on the whole At. We demonstrate below that

J(Θ) =
1

2
Et,δ,κ

[

D2
T+

KT

−
δ2

κ
+

∫

[t,T ]

ηsD
2
sds

]

(15)

with (ηs) as in Assumption 4.1 i). The right-hand side is stritly onvex in the proess (Ds)s∈[t,T ].

Thus, for two di�erent strategiesΘ′,Θ′′ ∈ At with orrespondingD
′, D′′

both starting inD′
t = D′′

t = δ,
we have D(νΘ′ + (1− ν)Θ′′) = νD′ + (1− ν)D′′

, hene J(νΘ′ + (1− ν)Θ′′) < νJ(Θ′) + (1− ν)J(Θ′′)
for all ν ∈ (0, 1) as desired. Hene, we only need to show (15).

De�ne the loal martingaleMs :=
∫

[t,s∧T ]
D2

uσ(u,Ku)
2K2

u
dWK

u for s ∈ [t,∞). That is, τn = {s ≥ t | 〈M〉s ≥

n} is an inreasing sequene of stopping times suh that τn ր ∞ a.s. and M τn
is a martingale for

2

Restriting trading to only two points in time is an example whih always has WR-BR struture irrespetive of

Assumption 4.1. Furthermore, in the ase of deterministially varying K we always have WR-BR struture in disrete

time and, for ontinuous K, in ontinuous time, see Fruth, Shöneborn, and Urusov (2014).
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every n. In partiular, Et,δ,κ[MT∧τn ] = 0. Due to the monotone onvergene theorem and τn ≥ T a.s.

for large n,

J(Θ) = lim
n→∞

Et,δ,κ

[

∫

[t,T∧τn]

(

Ds +
Ks

2
∆Θs

)

dΘs

]

. (16)

Using dΘs =
dDs+ρsDsds

Ks
and ∆Θs =

∆Ds

Ks
, we get

J(Θ) = lim
n→∞

Et,δ,κ

[

∫

[t,T∧τn]

Ds +
1
2∆Ds

Ks

dDs +

∫

[t,T∧τn]

ρsD
2
s

Ks

ds+

∫

[t,T∧τn]

1
2∆DsρsDs

Ks

ds

]

.

The last integral is zero, sine D has at most ountably many jumps. With integration by parts for

àglàd proesses,

∫

[t,T∧τn]

Ds

Ks

dDs =
D2

(T∧τn)+

K(T∧τn)
−

δ2

κ
−

∫

[t,T∧τn]

Dsd

(

D

K

)

s

−
∑

s∈[t,T∧τn]

(∆Ds)
2

Ks

.

Use d
(

D
K

)

s
= 1

Ks
dDs +Dsd

(

1
Ks

)

and rearrange terms to get

∫

[t,T∧τn]

Ds

Ks

dDs =
1

2





D2
(T∧τn)+

K(T∧τn)
−

δ2

κ
−

∫

[t,T∧τn]

D2
sd

(

1

Ks

)

−
∑

s∈[t,T∧τn]

(∆Ds)
2

Ks



 .

Applying It�'s formula

d

(

1

Ks

)

=

(

σ2(s,Ks)

K3
s

−
µ(s,Ks)

K2
s

)

ds−
σ(s,Ks)

K2
s

dWK
s

yields

∫

[t,T∧τn]

(

Ds +
Ks

2
∆Θs

)

dΘs =
1

2

[

D2
(T∧τn)+

KT∧τn

−
δ2

κ
+

∫

[t,T∧τn]

ηsD
2
sds+MT∧τn

]

.

The assertion follows, sine Lebesgue's dominated onvergene theorem together with Assumption 4.1 ii)

guarantee

Et,δ,κ

[

D2
(T∧τn)+

KT∧τn

]

−−−−→
n→∞

Et,δ,κ

[

D2
T+

KT

]

, (17)

while, by the monotone onvergene theorem, we have

Et,δ,κ

[

∫

[t,T∧τn]

ηsD
2
sds

]

−−−−→
n→∞

Et,δ,κ

[

∫

[t,T ]

ηsD
2
sds

]

. (18)

Proposition 4.4. (Existene and uniqueness of an optimal strategy).

Let Assumption 4.1 hold. Then, for all t ∈ [0, T ], δ ≥ 0, x ≥ 0 and κ > 0, there exists a unique

optimal strategy, i.e. there exists a unique Θ∗ = Θ∗(t, δ, x, κ) ∈ At(x) with

J (t, δ,Θ∗, κ) = inf
Θ∈At(x)

J (t, δ,Θ, κ) .

Proof. Thanks to Lemma 4.3, we only need to prove existene. Let t, δ and κ be �xed. We start by

showing that there exists a sequene of strategies

(

Θ
n
)

⊂ At(x) that onverges in some sense to a

11



strategy Θ∗ ∈ At(x) and minimizes the ost J , i.e. limn→∞ J
(

Θ
n
)

= infΘ∈At(x) J(Θ). We onlude

by deduing that limn→∞ J(Θ
n
) = J(Θ∗).

Let

(

Θj
)

⊂ At(x) be a minimizing sequene for J . Due to the Komlós theorem in the form of

Lemma 3.5 from Kabanov (1999), there exists a Cesaro onvergent subsequene (Θjm). That is,

Θ
n
:=

1

n

n
∑

m=1

Θjm

onverges to some strategy Θ∗ ∈ At in the following sense. For Pt,κ-almost every ω, the measures

Θ
n
(ω) on [t, T ] onverge weakly to the measure Θ∗(ω). In what follows we all suh a onvergene

pathwise weak onvergene in time. Equivalently, for almost every ω, we have limn→∞ Θ
n

s = Θ∗
s

whenever s ∈ [t, T ] with ∆Θ∗
s = 0. We set Θ∗

T+ = x rede�ning Θ∗
T+ if neessary. Notie that this does

not disturb the weak onvergene. Thus, Θ∗ ∈ At(x). Moreover,

(

Θ
n
)

⊂ At(x) is again a minimizing

sequene for J , sine J is onvex.

It remains to show that Θ∗
attains the in�mum. Applying (15) yields

J
(

Θ
n
)

=
1

2
Et,δ,κ

[

(

Dn
T+

)2

KT

−
δ2

κ
+

∫

[t,T ]

ηs (D
n
s )

2 ds

]

, (19)

J (Θ∗) =
1

2
Et,δ,κ

[

(

D∗
T+

)2

KT

−
δ2

κ
+

∫

[t,T ]

ηs (D
∗
s)

2
ds

]

, (20)

where Dn
and D∗

are the prie impat proesses that orrespond to Θ
n
and Θ∗

. By the (pathwise

weak in time) onvergene of Θ
n
to Θ∗

, for almost every ω, we get limn→∞ Dn
s = D∗

s for every point

s ∈ [t, T ], where Θ∗
is ontinuous, as well as for s = T+.3 Fatou's lemma and (19)�(20) now imply

J (Θ∗) ≤ lim infn→∞ J
(

Θ
n
)

, whih means that Θ∗
is an optimal strategy.

4.2 Wait and buy region struture

Under Assumption 4.1, we will now exploit the uniqueness of the optimal strategy to prove WR-BR

struture. Proposition 4.5 treats the disrete time ase, whih is then transferred to ontinuous time

in Proposition 4.8.

Proposition 4.5. (Disrete time: WR-BR struture).

Let Assumption 4.1 hold. Then the value funtion Udis
has WR-BR struture.

Proof. Aording to Propositions 3.7 and 4.4, we only need to show that the optimal initial trade

∆Θ∗
tn
(tn, δ, x, κ) is inreasing in x, where Θ∗

denotes the orresponding optimal strategy. Due to the

saling property of the value funtion (Lemma 3.1),

∆Θ∗
tn
(tn, δ, x, κ) = δ∆Θ∗

tn

(

tn, 1,
x

δ
, κ
)

.

Due to the splitting argument (Lemma 2.1) and the uniqueness of the optimal strategy,∆Θ∗
tn
(tn, 1, ·, κ)

must be inreasing and ontinuous apart from a possible disontinuity in the form of a jump bak to

zero. That is there might exist y > 0 with ∆Θ∗
tn

(tn, 1, y−, κ) > 0 and ∆Θ∗
tn

(tn, 1, y+, κ) = 0. In the

following, we exlude suh disontinuities using a Komlós argument as in the proof of Proposition 4.4.

Suppose for a ontradition that suh a disontinuity exists in y > 0. Let us take some monotone

sequenes y1,j ր y and y2,j ց y and de�ne Θi,j := Θ∗(tn, 1, y
i,j, κ) for i ∈ {1, 2}. Let us hoose ǫ > 0

3

See also Lemma 7.3 of Fruth, Shöneborn, and Urusov (2014).
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suh that ∆Θ1,j
tn

≥ ǫ > 0 for all su�iently large j. Without loss of generality we assume that the

latter inequality holds for all j. Sine V dis
is ontinuous in y (see Proposition 3.2),

J
(

tn, 1,Θ
1,j, κ

)

= V dis
(

tn, y
1,j , κ

)

−−−→
j→∞

V dis (tn, y, κ) .

De�ne bj :=
y

y1,j ց 1. Then we have

0 ≤ J
(

tn, 1, bjΘ
1,j, κ

)

− J
(

tn, 1,Θ
1,j, κ

)

≤ J
(

tn, bj, bjΘ
1,j, κ

)

− J
(

tn, 1,Θ
1,j, κ

)

= (b2j − 1)J
(

tn, 1,Θ
1,j, κ

)

−−−→
j→∞

0.

Therefore,

(

bjΘ
1,j
)

is a minimizing sequene of strategies that build up the position of y shares,

i.e., bjΘ
1,j ∈ Adis

tn
(y) and

lim
j→∞

J
(

tn, 1, bjΘ
1,j , κ

)

= V dis (tn, y, κ) .

As in the proof of Proposition 4.4, we an de�ne Θ ∈ Adis
tn

(y) as the pathwise weak in time limit of

the averaged sum over a subsequene of

(

bjΘ
1,j
)

suh that J(tn, 1,Θ, κ) = V dis(tn, y, κ), i.e. Θ is an

optimal strategy. Due to the onstrution of Θ, with ǫ > 0 from above, we have

∆Θtn (tn, 1, y, κ) ≥ ǫ > 0.

Similarly, one onstruts an optimal strategy Θ ∈ Adis
tn

(y) using the sequene

(

y
y2,j Θ

2,j
)

of strategies

with zero initial trade. Sine we now treat the disrete time ase, the initial trade remains zero also

in the weak limit:

∆Θtn (tn, 1, y, κ) = 0.

Thus, Θ and Θ are di�erent. This ontradits the uniqueness of the optimal strategy.

The line of argument used in the preeding proof does not extend diretly to ontinuous time. Let

us also notie that we did not yet use part iii) of Assumption 4.1. We now transfer the disrete time

result of Proposition 4.5 to ontinuous time in Proposition 4.8 using the approximation tehniques of

Lemmas 4.6 and 4.7, and we will now need part iii) of Assumption 4.1.

Lemma 4.6. (Approximation via step funtions).

Let Assumption 4.1 hold. For Θ ∈ Acts
t (x), let ΘN ∈ Adis

t (x) be its approximation from below by an

equidistant grid step funtion. More preisely, de�ne T 0
t := {t, T },

T N+1
t := T N

t ∪

{(

s+
T − t

2N+1

)

∧ T | s ∈ T N
t

}

and

ΘN
s :=







0 if s = t
Θu+ if s ∈

(

u, u+ T−t
2N

]

, u ∈ T N
t

x if s = T+







.

Then J (t, 1,Θ, κ) = limN→∞ J
(

t, 1,ΘN , κ
)

.

Proof. We proeed as at the end of the proof of Proposition 4.4. That is we only need to show

that ΘN
onverges pathwise weakly in time to Θ. Due to T N

t ⊂ T N+1
t , ΘN

is inreasing in N . For

all s ∈ [t, T+], the sequene
(

ΘN
s

)

N∈N
is bounded above by Θs. Hene, it is onvergent. Due to the

de�nition of ΘN
, we must even have limN→∞ ΘN

s = Θs for all s ∈ [t, T ] with ∆Θs = 0. Now the result

follows from (15) and the dominated onvergene theorem (apply Assumption 4.1 ii) and iii)).
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Lemma 4.7. (Cesaro weak onvergene).

Fix t ∈ [0, T ], κ ∈ (0,∞) and for various x ∈ [0,∞) onsider

(

ΘN (t, 1, x, κ)
)

N∈N
⊂ Acts

t (x).

Then there exists a subsequene Nj(t, κ), whih does not depend on x, and a set of strategies Θ̃(t, 1, ·, κ)
suh that for all x ∈ [0,∞) ∩Q

1

m

m
∑

j=1

ΘNj (t, 1, x, κ)
w

−−−−→
m→∞

Θ̃ (t, 1, x, κ) . (21)

In (21) the notation �

w
−→� stands for the pathwise weak onvergene in time (f. the proof of Propo-

sition 4.4).

Proof. Sine Q is ountable, we an write [0,∞) ∩ Q = {x1, x2, ...}. For eah x ∈ [0,∞), the Komlós

theorem guarantees the existene of a subsequene Nj (t, x, κ) suh that the desired pathwise weak

onvergene in time holds. That is we get (N
(1)
j )j∈N ⊂ N for x1 and extrat the subsequeneN

(2)
j for x2

from N
(1)
j , et. We remark that the Komlós theorem gives not only Cesaro onvergent subsequenes,

but subsequenes suh that all their subsequenes are Cesaro onvergent to the same limit. The

Cantor diagonal sequene Nj := N
(j)
j then guarantees the Cesaro weak onvergene of ΘNj (t, 1, x, κ)

for all x ∈ [0,∞) ∩Q.

Proposition 4.8. (Continuous time: WR-BR struture).

Let Assumption 4.1 hold. Then the value funtion U cts
has WR-BR struture.

Proof. As in the proof of Proposition 4.5, we only need to exlude the jump bak to zero of x 7→
∆Θ∗

t (t, 1, x, κ). Let Θ
N ∈ Adis

t (x) be the approximation of Θ∗ ∈ Acts
t (x) by step funtions from below

as in Lemma 4.6. Then

J (t, 1,Θ∗, κ) = lim
N→∞

J
(

t, 1,ΘN , κ
)

.

Let Θ∗N
be the unique optimal strategy within Adis

t (x) for the time grid T N
t , i.e.

J
(

t, 1,ΘN , κ
)

≥ J
(

t, 1,Θ∗N , κ
)

≥ J (t, 1,Θ∗, κ) .

Hene,

J (t, 1,Θ∗, κ) = lim
N→∞

J
(

t, 1,Θ∗N , κ
)

.

That is, for eah x ∈ [0,∞), (Θ∗N (t, 1, x, κ))N∈N is a minimizing sequene, and for eah N ∈ N, x 7→
∆Θ∗N

t (t, 1, x, κ) is inreasing thanks to Proposition 4.5.

Apply Lemma 4.7 to Θ∗N(t, 1, x, κ) (for all rational x). The resulting strategy Θ̃(t, 1, x, κ) as in (21)

is optimal (apply onvexity of the ost funtion together with (15) and the dominated onvergene

theorem). Sine the optimal strategy is unique, Θ̃(t, 1, x, κ) must oinide with Θ∗(t, 1, x, κ) for all
x ∈ [0,∞) ∩ Q. Furthermore, sine we already proved WR-BR struture in disrete time, for all N
and s ∈ [t, T ], the funtion x 7→ Θ∗N

s (t, 1, x, κ) is inreasing. Due to the pathwise weak onvergene

as in (21), for all s ∈ [t, T ], the funtion x 7→ Θ∗
s(t, 1, x, κ) is inreasing over rational x. In partiular,

x 7→ ∆Θ∗
t (t, 1, x, κ) ≡ Θ∗

t+(t, 1, x, κ) is inreasing over rational x. Sine we only need to exlude the

downward jump, it su�es to have this monotoniity over the rational numbers.
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5 Example models with WR-BR struture

By Theorem 4.2, any model satisfying Assumption 4.1 has WR-BR struture. In this setion, we show

that Assumption 4.1 is satis�ed by several standard proesses. We start with deterministi K.

Proposition 5.1. (Deterministi ase).

Assume that K : [0, T ] → (0,∞) is deterministi and two times ontinuously di�erentiable, ρ : [0, T ] →
(0,∞) is ontinuously di�erentiable with K ′

t+2ρtKt > 0 for all t ∈ [0, T ]. Then Assumption 4.1 holds,

and the value funtion has WR-BR struture.

Proof. Condition i) is equivalent to K ′
t + 2ρtKt > 0, and ii), iii) are learly satis�ed for deterministi

ontinuous K.

Let us now turn to a time-homogeneous geometri Brownian motion (GBM). Notie that, due to the

homogeneity in time, it is enough to verify the onditions in Assumption 4.1 only under measures P0,κ.

Proposition 5.2. (GBM ase).

Let K be a geometri Brownian motion

dKt = µ̄Kt dt+ σ̄Kt dW
K
t , K0 = κ > 0.

Consider a onstant resiliene ρt ≡ ρ̄ > 0 suh that 2ρ̄+ µ̄− σ̄2 > 0. Then Assumption 4.1 holds, and

the value funtion has WR-BR struture.

Proof. i) We have ηt =
1
Kt

(

2ρ̄+ µ̄− σ̄2
)

> 0.

ii) Set qt :=
1
Kt

. Thanks to Hölder's inequality,

E0,κ







(

supt∈[0,T ]Kt

)2

inft∈[0,T ]Kt






≤ E0,κ

[

sup
t∈[0,T ]

K4
t

]
1
2

E0,κ

[

sup
t∈[0,T ]

q2t

]
1
2

. (22)

The expliit formula for GBM, Kt = K0e
σ̄WK

t +
(

µ̄− σ̄2

2

)

t
, yields

E0,κ

[

sup
t∈[0,T ]

K4
t

]

≤ κ4 max

{

1, e
4
(

µ̄− σ̄2

2

)

T

}

E0,κ

[

exp

(

4σ̄ sup
t∈[0,T ]

WK
t

)]

.

The latter expression is �nite due to the fat that (supt∈[0,T ]W
K
t ) has the same distribution as |WK

T |,
whih is a onsequene of the re�etion priniple for a Brownian motion. The seond expetation

in (22) is �nite, sine qt =
1
Kt

is also a GBM (with drift (σ̄2 − µ̄) and volatility σ̄).

iii) Due to the form of ηt, it is enough to onsider

E0,κ





∫ T

0

(

sup
t∈[0,T ]

Kt

)2
1

Kt

dt



 ≤ T E0,κ







(

supt∈[0,T ]Kt

)2

inft∈[0,T ] Kt






,

where the right-hand side is �nite aording to ii).

See Fruth (2011) for alternative onditions ensuring WR-BR struture in the GBM ase. We onlude

this setion with the Cox-Ingersoll-Ross (CIR) proess. This proess is partiularly appealing from

the eonomi point of view due to its mean reversion.

4

4

See Fruth (2011), Setion 3.3, for numerial illustrations of WR-BR barriers, optimal trading strategies and ost

distribution funtions for K being a CIR proess.
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Proposition 5.3. (CIR ase).

Let K be a Cox-Ingersoll-Ross proess

dKt = µ̄(K̄ −Kt) dt+ σ̄
√

Kt dW
K
t , K0 = κ > 0,

where K̄, µ̄, σ̄ > 0. Consider a onstant resiliene ρt ≡ ρ̄ > 0 suh that

2ρ̄ ≥ µ̄ > 2σ̄2/K̄.

Then Assumption 4.1 holds, and the value funtion has WR-BR struture.

Proof. Suh a CIR proess stays a.s. stritly positive, as the Feller ondition µ̄K̄ ≥ σ̄2/2 is met.

Moreover, it turns out that ηt =
1
Kt

(2ρ̄−µ̄)+ 1
K2

t

(µ̄K̄− σ̄2) > 0 due to our assumptions. Conditions ii)

and iii) both hold by showing

E0,κ







(

supt∈[0,T ] Kt

)2

(

inft∈[0,T ] Kt

)2






< ∞.

Thanks to Hölder's inequality, with qt =
1
Kt

, we have

E0,κ







(

supt∈[0,T ]Kt

)2

(

inft∈[0,T ]Kt

)2






≤ E0,κ

[

sup
t∈[0,T ]

K8
t

]
1
4

E0,κ

[

sup
t∈[0,T ]

q
8
3
t

]
3
4

. (23)

Sine the drift of the CIR proess is bounded above, we an isolate the loal martingale part of K and

use the Burkholder-Davis-Gundy inequalities.

5

With appropriate positive onstants c̄n, we obtain

E0,κ

[

sup
t∈[0,T ]

K8
t

]

≤ c̄1

{

κ8 +
(

µ̄K̄T
)8

+ E0,κ

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

σ̄
√

Ks dW
K
s

∣

∣

∣

∣

8
]}

(24)

≤ c̄2







κ8 +
(

µ̄K̄T
)8

+ E0,κ





(

∫ T

0

σ̄2Ks ds

)4










.

The latter expetation is �nite beause all positive moments of the CIR proess are �nite (see, e.g.,

Filipovi and Mayerhofer (2009)).

It remains to show that the seond term on the right-hand side of (23) is �nite. By It�'s formula, the

proess qt =
1
Kt

has the dynamis

dqt =
(

µ̄qt −
(

µ̄K̄ − σ̄2
)

q2t
)

dt− σ̄q
3
2
t dWK

t .

With these preparations, we proeed similarly to (24):

E0,κ

[

sup
t∈[0,T ]

q
8
3
t

]

≤ c̄3







κ− 8
3 +

(

µ̄2T

4
(

µ̄K̄ − σ̄2
)

)
8
3

+ E0,κ

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

σ̄q
3
2
s dWK

s

∣

∣

∣

∣

8
3

]







≤ c̄4







κ− 8
3 +

(

µ̄2T

4
(

µ̄K̄ − σ̄2
)

)
8
3

+ E0,κ





(

∫ T

0

σ̄2q3s ds

)
4
3











.

5

For every m > 0, there exist universal positive onstants km and Km suh that

kmE
[

〈M〉mτ
]

≤ E

[

(

max
t≤τ

|Mt|

)2m
]

≤ KmE
[

〈M〉mτ
]

for every ontinuous loal martingale M with M0 = 0 and every stopping time τ . See, e.g., Karatzas and Shreve (2000),

Chapter 3, Theorem 3.28.
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We are done, sine E0,κ

[

(
∫ T

0
q3s ds)

4
3

]

≤ c̄5
∫ T

0
E0,κ[q

4
s ] ds, and the fourth moment of the inverse CIR

proess is �nite whenever µ̄K̄ > 2σ̄2
(see, e.g., Ahn and Gao (1999) for an expliit alulation of

negative moments of the CIR proess).

6 Example models without WR-BR struture

In this setion, we provide examples that do not follow the WR-BR struture. In partiular, we

show that ases of WR-BR-WR struture an our: when a large number of shares remains to

be purhased, we may �nd that it is optimal to wait in spite of buying being optimal if a smaller

number of shares is remaining. We �rst onsider a tratable model with two senarios and thereafter

provide numerial results for a CIR model in disrete time. All of our examples are in disrete time

with trading ourring at three points in time. The following proposition establishes that WR-BR

struture always applies if trading ours at only two points in time.

Proposition 6.1. (WR-BR struture for two trading instanes).

Let N = 1, i.e. 0 = t0 < t1 = T , and denote a0 := e−
∫ t1
t0

ρsds
. Then the value funtion has WR-BR

struture with

V dis (t0, y, κ) =
1

2
Et0,κ[KT ]y

2 + a0y −

{

[(Et0,κ[KT ]−κa0)y−(1−a0)]
2

2κ+2Et0,κ[KT ]−4κa0
if y > c (t0, κ)

0 otherwise

}

,

c (t0, κ) =

{ 1−a0

Et0,κ[KT ]−κa0
if Et0,κ[KT ] > κa0

∞ otherwise

}

.

Proof. We know that Udis(t1, δ, x, κ) = (δ + κ
2x)x. The assertion follows from

Udis(t0, δ, x, κ) = min
ξ∈[0,x]

{(

δ +
κ

2
ξ
)

ξ + Et0,κ

[

Udis (t1, (δ + κξ)a0, x− ξ,KT )
]

}

.

Note that we have not made any spei� assumptions on the distribution of KT in the proof of

Proposition 6.1.

6.1 A model with two senarios in disrete time

Let us assume that the proess K is not driven by a di�usion, but instead is given by a �nite number

of senarios. The ase of a single senario implies a deterministi evolution of K whih always results

in a WR-BR struture. We therefore fous on the seond simplest ase of two equally likely senarios

A and B, i.e. Ω = {ωA, ωB}, and onsider three trading instanes {t0, t1, t2}, i.e. N = 2. To fully

speify this two senario model, we need to hoose seven onstants

a0 := e−
∫ t1
t0

ρsds, a1 := e−
∫ t2
t1

ρsds, κ0, κ
A
1 := Kt1 (ωA) , κ

A
2 := Kt2(ωA), κ

B
1 := Kt1(ωB), κ

B
2 := Kt2(ωB).

Proposition 6.2. With the parameter values given in Figure 1, the optimal strategy is of WR-BR-

WR struture, i.e., there are two threshold values 0 < cu < cl < ∞ suh that the buy region at time

t0 is given by Brt0 = (cu, cl].
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Figure 1: Seven onstants that speify the two senario model with three trading instanes.

Proof. The optimal strategy is determined by ξ0, ξ
A
1 and ξB1 . Sine c(t1, κ

A
1 ) = c(t1, κ

B
1 ) = 1 =: c(t1)

by Proposition 6.1, we see that ξA1 > 0 if and only if ξB1 > 0.

Let us now onsider a given trade ξ0 at time t0 and assume optimal trading thereafter. This results

in a ost of

Ũdis(t0, δ, x, κ0; ξ0) :=
(

δ +
κ0

2
ξ0

)

ξ0 + E
[

Udis(t1, (δ + κ0ξ0)a0, x− ξ0, κ1)
]

.

It is easy to see that Ũdis
is pieewise quadrati in ξ0. For the setion of ξ0 where the optimal ξ1 is

positive (ξ1 > 0), a straightforward alulation shows that the quadrati oe�ient is negative. Ũdis

therefore annot attain its minimum in the interior of this setion; the optimal strategy therefore

satis�es ξ0 = 0, ξ1 = 0 or ξ0 = ξ1 = 0.

Using Proposition 6.1, we easily alulate that for trading only at times t0 and t2, we have

cl := c0,2(t0) < 1/a0 = c(t1)/a0.

Hene (cl, 1/a0] must be a subset of the buy region Brt0 . For y > c(t1)/a0 = 1/a0, we need to ompare

the ost U0,2
of optimally trading only at times t0 and t2 with the ost U1,2

of optimally trading only

at time t1 and t2. Using the parameter values given in Figure 1, we �nd that the quadrati oe�ient

of U0,2
is larger than the quadrati oe�ient of U1,2

; therefore there must be an intersetion point

cu > cl where U
1,2 = U0,2

. We then have for y ≤ cl that U
1,2 = U0,2

and the optimal strategy trades

neither at t0 nor t1, for cl < y < cu that U0,2 < U1,2
and the unique optimal strategy trades at t0

but not at t1, for y = cu that U0,2 = U1,2
and there are two optimal strategies (one trading at t0 but

not t1, and one trading at t1 but not t0), and for y > cu that U0,2 > U1,2
and the unique optimal

strategy trades at t1 but not at t0.

To illustrate the dynamis of the optimal strategy, we take di�erent x and plot

ξ 7→ Ũdis (t0, 1, x, 1.95; ξ)

in Figure 2. When the total order is as small as x = 0.9, it is optimal not to do an initial trade. The

transition from wait to buy region is approximately at x = 0.95. For x = 1, we are in the buy region

and one optimally trades about two perent of the total order at time t0. But at x = 5.75, we swith
from buy to wait region and stay in the wait region for all larger values of x. The graph for x = 5.75
illustrates the non-uniqueness of the optimal strategy at the transition from buy to wait region.

Intuition might suggest that the larger the remaining position x at time t0, the larger the initial

trade ξ0. The downside of trading at time t0 is that the full initial impat δ is in�uening the ost

funtional (at later points in time this initial impat is partially deayed already). The upside is a
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more balaned distribution of new impat aross an additional time point (any impat generated at

time t0 will already be partially deayed at time t1). These two e�ets are the only drivers in the

ase of deterministi K, and the seond e�et grows faster in the remaining position x than the �rst

e�et. If K evolves stohastially, then a third e�et omes into play: trading at times after t0 an

respond to new information gained about K (suh as whether senario A or B ourred). This e�et

an dominate the seond e�et for large remaining positions x.

0.005 0.010 0.015 0.020Ξ

1.0576

1.0578

1.0580

1.0582

Costs
x � 0.9®Wait

0.01 0.02 0.03 0.04 Ξ

1.2498

1.2499

1.2500

1.2501

Costs
x � 1® Buy

0.5 1.0 1.5 Ξ
25.56

25.57

25.58

25.59

25.60

Costs
x � 5.75® Buy or Wait

2 4 6 8 10 Ξ
276.5

277.0

277.5

278.0

278.5

279.0

279.5

Costs
x � 20®Wait

Figure 2: For the parameters from Figure 1 and total order size x = 0.9, 1, 5.75, 20, the graphs plot the

dependene of the osts Ũdis (t0, 1, x, 1.95; ξ) on the initial trade ξ.

Let us now analyze the situation for di�erent values of κ0 while keeping the other model parameters

inluding κA
1 , κ

B
1 , κ

A
2 and κB

2 �xed. Figure 3 indiates for eah point (κ0, x) if it belongs to the buy

or wait region. It is reated by omputing the optimal initial trade ξ(κ0, x) of Ũdis (t0, 1, x, κ0; ξ)
analytially. WR-BR-WR struture ours for κ0 ∈ (1.94, 2). The upper barrier from buy to wait

region has an asymptote at κ0 = 1.94. For the ase κ0 = 1.95 that we disussed in Figure 2, the small

dots on the right-hand side of Figure 3 point out the transitions from wait to buy region and buy to

wait region respetively. For expensive κ0 ≥ 2, we are not trading irrespetively of the size of the total
order. For inexpensive κ0 ≤ 1.94, we have the usual WR-BR situation. On the interval in between,

the large investor has an inentive not to trade for large positions x. The resiliene between t0 and t1
is extremely low and waiting until t1 has the advantage of gaining information whether senario A
or B has ourred. That is there is a tradeo� between gaining information by waiting until the next

time instane and attrating resiliene by trading right now.

The two senario model in this setion an be approximated by a di�usive model that has almost half

of its senarios arbitrarily lose to senario A and almost another half arbitrarily lose to senario B.

For suh a di�usive model it an be shown that it does not exhibit a WR-BR struture.
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Figure 3: For the parameters from Figure 1, but di�erent values of κ0, we illustrate the wait and buy region.

Looking more losely at the large dot (κ0, x) = (2, 1) yields the piture on the right-hand side. The buy region

has the shape of a wedge.

6.2 Cox-Ingersoll-Ross proess in disrete time

In Setion 5, we have onsidered examples of di�usive models and shown that they have WR-BR

struture if ertain onditions are met. For the ase of the CIR proess

6

dKs = µ̄
(

K̄ −Ks

)

ds+ σ̄
√

KsdW
K
s ,

let us now onsider three trading times {t0, t1, t2} with

t0 = 0, t1 = 0.0072, t2 = 1.0072, ρ ≡ 1.3863,

µ̄ = 0.6931, K̄ = 1, σ̄ = 5.2523. (25)

This example violates the onditions of Proposition 5.3. It is inspired by the two senario model

of the previous subsetion. E.g., t1 is lose to t0, and the high volatility makes illiquid senarios

with Kt >> K̄ likely to our.

Using Proposition 6.1 and the density funtion of the CIR proess together with a numerial integration

sheme, we an ompute Ũdis (t0, 1, x, κ0; ξ) from dynami programming. For eah point (κ0, x), we
an alulate the osts for di�erent trades ξ0 from an equidistant grid {0, dξ, ..., x}. We an then infer

that the point (κ0, x) belongs to the wait region if the osts for ξ = 0 are smaller than the osts on

the remaining grid.

Exeuting this sheme for several points (κ0, x) yields Figure 4. As for the two senario model, there

exist hoies of κ0 that lead to WR-BR-WR struture. But instead of a wedge-shaped buy region, we

get a tongue-shaped upper wait region, whih is loated around the mean-reversion level K̄ = 1.

7 Pro�table round trip strategies

So far we have only onsidered one side of the limit order book. In this setion, we extend our model

and inlude the other side of the limit order book. In suh two-sided limit order books, round trip

strategies are possible and we determine under whih onditions they an be pro�table.

Without loss of generality we now onsider the starting time 0. We model strategies that both buy

and sell the asset as a pair (Θ, Θ̃), where Θ ∈ A0 and Θ̃ ∈ A0 desribe the number of shares whih

6

See Fruth (2011) for a WR-BR-WR example for the time-inhomogeneous GBM and three trading instanes.
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Figure 4: This �gure shows a WR-BR-WR example for the CIR proess with parameters (25) and three

trading instanes. Points (κ0, x) ∈ {0.1, 0.2, ..., 2.1}×{0.2, 0.4, ..., 8} are onsidered. The wait region is shaded

blak.

the investor bought respetively sold starting from time 0. The position at time t is given by Θt− Θ̃t,

and a round trip strategy is haraterised by ΘT+ = Θ̃T+. Reall that, by de�nition of A0, ΘT+ and

Θ̃T+ are bounded random variables. If At and Bt are the best ask and best bid pries respetively,

then the total ost of a strategy (Θ, Θ̃) is given by

C(Θ, Θ̃) :=

∫

[0,T ]

(

At +
Kt

2
∆Θt

)

dΘt −

∫

[0,T ]

(

Bt −
Kt

2
∆Θ̃t

)

dΘ̃t. (26)

We now present two di�erent models for two-sided limit order books. The orresponding models for

deterministiK are disussed in Fruth, Shöneborn, and Urusov (2014). First, we onsider a two-sided

limit order book with bid-ask spread that depends on trading ativity.

Model 7.1. (Dynami spread model).

The best ask and best bid prie proesses A and B in (26) are modelled as At := Au
t + Dt and

Bt := Bu
t − Et, where the una�eted best ask and best bid prie proesses Au

and Bu
are àdlàg

H1
-martingales with Bu

t ≤ Au
t for all t ∈ [0, T ], and

Dt := D0e
−

∫

t

0
ρsds +

∫

[0,t)

Kse
−

∫

t

s
ρududΘs, t ∈ [0, T+], (27)

Et := E0e
−

∫

t

0
ρsds +

∫

[0,t)

Kse
−

∫

t

s
ρududΘ̃s, t ∈ [0, T+], (28)

with some given non-negative initial prie impats D0 ≥ 0 and E0 ≥ 0.

Proposition 7.2. (Pro�table round trips in the dynami spread model).

In the dynami spread model round trip trading strategies annot be pro�table. That is, for all κ > 0,
D0 ≥ 0 and E0 ≥ 0, for all admissible (Θ, Θ̃) with ΘT+ = Θ̃T+, we have

E0,κ[C(Θ, Θ̃)] ≥ 0.

Furthermore, the expeted exeution osts of a buy (or sell) program that builds up a deterministi

position of say x ∈ R shares annot be dereased by intermediate sell (resp. buy) trades. That is, for

all κ > 0, D0 ≥ 0 and E0 ≥ 0, for any admissible (Θ, Θ̃) with ΘT+ − Θ̃T+ = x > 0, there is an

admissible Θ̂ with Θ̂T+ = x suh that E0,κ[C(Θ, Θ̃)] ≥ E0,κ[C(Θ̂, 0)]; also the symmetri statement

with x < 0 holds true.
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We omit the proof sine it is a diret extension of the orresponding Proposition 3.4 in Fruth,

Shöneborn, and Urusov (2014). Let us now onsider an alternative model for a two-sided limit

order book in whih the spread is onstantly zero.

Model 7.3. (Zero spread model).

The best ask and best bid prie proesses in (26) are modelled as A
l
t := B

l
t := Su

t +D
l
t , where the

una�eted prie Su
is a àdlàg H1

-martingale, and

D
l
t := D

l
0e

−
∫

t

0
ρs ds +

∫

[0,t)

Kse
−

∫

t

s
ρu du(dΘs − dΘ̃s), t ∈ [0, T+], (29)

with some given initial prie impat D
l
0 ∈ R.

There is a subtle di�erene in understanding prie manipulation between the dynami and zero spread

models. In the disussion of pro�table round trip strategies in the dynami spread model (see Propo-

sition 7.2) we onsidered arbitrary initial values D0 ≥ 0 and E0 ≥ 0 in (27) and (28). In ontrast

to this, in the disussion of pro�table round trip strategies in the zero spread model (Theorem 7.4,

whih follows) we will onsider D
l
0 = 0 in (29). Whenever D

l
0 6= 0 we usually have pro�table round

trip strategies in the zero spread model, and this is due not to properties of the model, but rather to

the fat that both buy and sell orders are exeuted at the same prie, suh that pro�table round trips

will make use of the initial deviation D
l
0 from the una�eted prie Su

and of the fat that, due to the

resiliene, the absolute value of this deviation dereases to zero in the absene of trading.

7

In order to study pro�table round trip strategies in the zero spread model let us introdue the notations

Θl := Θ− Θ̃

for the omposite strategy, whih inludes both buy and sell orders, and, by analogy with (5),

Jl(Θl) := Jl(t, δ,Θl, κ) := J
l
T (t, δ,Θ

l, κ) := Et,δ,κ

[

∫

[t,T ]

(

Dl
s +

Ks

2
∆Θl

s

)

dΘl
s

]

for the ost funtion.

8

We will sometimes write J
l
T with the subsript T to emphasize the time horizon

expliitly. As in (5), the subsript in Et,δ,κ means that we start at time t with D
l
t = δ and Kt = κ.

Let us onsider di�usion setting (14) for all �nite time horizons T < ∞ and introdue the funtion

η : R+ × (0,∞) → R by the formula

η(s, κ) :=
2ρs
κ

+
µ(s, κ)

κ2
−

σ2(s, κ)

κ3
,

that is, we have ηs = η(s,Ks) for ηs as in Assumption 4.1 i).

7

See Remark 8.2 in Fruth, Shöneborn, and Urusov (2014) for more detail on this point.

8

The preise explanation of how this formula omes into play is similar to the explanation in Footnote 1 on page 4.

Namely, onsider a strategy (Θ, Θ̃) ∈ At × At that aquires Θ
l
T+ = x shares on the time interval [t, T ] (x ∈ R is

deterministi). The total ost of this strategy is (f. (26))

∫

[t,T ]

(

Su
s +D

l
s +

Ks

2
∆Θs

)

dΘs −

∫

[t,T ]

(

Su
s +D

l
s −

Ks

2
∆Θ̃s

)

dΘ̃s.

A alulation involving integration by parts and using that Su
is an H1

-martingale as well as that Θ and Θ̃ are bounded

reveals that the expeted total ost equals

Su
t x+ Et,δ,κ

[

∫

[t,T ]

(

D
l
s +

Ks

2
∆Θs

)

dΘs −

∫

[t,T ]

(

D
l
s −

Ks

2
∆Θ̃s

)

dΘ̃s

]

.

Again, the �rst summand, whih is trivial and moreover vanishes for round trip strategies, desribes the expeted ost

that ours due to trading in the una�eted prie. The seond summand in the latter formula, whih desribes the

expeted liquidity ost, is in general larger than Jl(t, δ,Θl, κ), but it is equal to Jl(t, δ,Θl, κ) whenever ΘT+ + Θ̃T+

equals the variation of Θl
over [t, T ]. It remains to notie that the latter an always be assumed without loss of

generality (and, moreover, it does not make sense eonomially to onsider strategies (Θ, Θ̃) with ΘT+ + Θ̃T+ being

stritly greater than the variation of Θl
over [t, T ] beause this means that buying and selling happen simultaneously).
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Theorem 7.4. (Pro�table round trips in the zero spread model).

In the zero spread model suppose that Assumption 4.1 ii) holds for all �nite T < ∞ and

(A) the resiliene is bounded away from zero (ρs ≥ ρ̄ > 0) as well as, for all t ≥ 0 and κ > 0, the
funtion s 7→ Et,κ[Ks], s ∈ [t,∞), is bounded.

We then have the following lassi�ation:

1. If η ≥ 0 everywhere, then all round trip strategies starting at any time t ≥ 0 with D
l
t = 0 have

nonnegative osts.

2. Under Assumption 4.1 iii), if η < 0 in some [t, t+∆t]× [κ− ǫ, κ+ ǫ], then there are pro�table

round trip strategies starting at t with D
l
t = 0.9

Assumption (A) is satis�ed for a wide range of proesses K inluding stationary proesses suh as the

CIR proess as well as the GBM proess with non-positive drift (µ̄ ≤ 0) whenever the resiliene is

bounded away from zero.

We will see in the proof that the role of Assumption (A) is to ensure that liquidation of a random but

bounded position that the investor has at some time t+∆t an be ahieved for arbitrarily small ost if

D
l
t+∆t+ = 0 and the time horizon T is large. The latter property seems natural to expet in reasonable

models when the resiliene is bounded away from zero. In fat, one might replae Assumption (A)

with any other assumption that ensures the property stated above.

Parts ii) and iii) of Assumption 4.1 are required for some tehnial aspets of our proof. That is, the

main message of Theorem 7.4 an be somewhat loosely desribed as follows: if η ≥ 0 everywhere, then
round trip strategies annot be pro�table; if η < 0 somewhere,

10

then pro�table round trip strategies

exist.

Proof. We an extend the proof of (15) to the zero spread model and �nd that the ost funtion Jl

satis�es

Jl(t, δ,Θl, κ) =
1

2
Et,δ,κ

[

(D
l
T+)

2

KT

−
δ2

κ
+

∫

[t,T ]

ηs(D
l
s)

2 ds

]

(30)

with ηs ≡ η(s,Ks) as in Assumption 4.1 i). More preisely, instead of monotone onvergene

in (16) we need to use dominated onvergene, whih applies beause Θ and Θ̃ are bounded and

Et,κ[sups∈[t,T ]Ks] < ∞ (the latter follows from Assumption 4.1 ii)), and again dominated onver-

gene works in (17) (based on Assumption 4.1 ii)). As for (18), we use monotone onvergene in the

�rst ase (η ≥ 0), while dominated onvergene applies in the seond ase (due to Assumption 4.1 iii)).

In partiular, when we start at time t with D
l
t = 0, we have

Jl(t, 0,Θl, κ) =
1

2
Et,0,κ

[

(D
l
T+)

2

KT

+

∫

[t,T ]

ηs(D
l
s )

2 ds

]

,

whih establishes the statement in the �rst ase (η ≥ 0 everywhere).

Similarly to (30) we establish that, for any stopping time τ with t ≤ τ ≤ T , it holds

J
l
T (t, δ,Θ

l, κ) =
1

2
Et,δ,κ

[

(D
l
τ+)

2

Kτ

−
δ2

κ
+

∫

[t,τ ]

ηs(D
l
s)

2 ds

]

+ Et,δ,κ

[

∫

(τ,T ]

(

Dl
s +

Ks

2
∆Θl

s

)

dΘl
s

]

.

(31)

9

As pointed out above pro�table round trip strategies exist also for D
l
t being di�erent from zero, but the relevant

question in the zero spread model is the one for D
l
t = 0.

10

Let us also notie that, if η(t, κ) < 0 at some point (t, κ) and the funtions ρ, µ and σ are ontinuous, then η < 0
in some [t, t+∆t]× [κ− ǫ, κ+ ǫ].
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We now make use of (31) to onstrut a pro�table round trip strategy in the seond ase. Starting at

(t, κ) with D
l
t = 0, let us de�ne the stopping time

τ := (t+∆t) ∧ inf {s ≥ t | Ks /∈ (κ− ǫ, κ+ ǫ)}

and onsider the following trading strategy. First, buy x > 0 units of the asset at time t. This results

in D
l
t+ = κx. At time τ , we have D

l
τ = κxe−

∫

τ

t
ρs ds

and sell y =
Dl

τ

Kτ
units of the asset, resulting in

D
l
τ+ = 0. We do nothing in (τ, t + ∆t) and then liquidate the position x − y with a uniform speed

between t + ∆t and T . Notie that the position x − y is random (it depends on Kτ ), but bounded

(due to the onstrution of τ). Summarizing, we onsider the following round trip strategy: Θ
l
t = 0,

Θ
l
s = x for s ∈ (t, τ ], Θ

l
s = x− y for s ∈ (τ, t+∆t],

Θl
s = x− y +

s− t−∆t

T − t−∆t
(y − x), s ∈ (t+∆t, T ],

and Θ
l
T+ = Θ

l
T = 0. An appliation of (31) in this ase yields

J
l
T (t, 0,Θ

l, κ) =
1

2
Et,0,κ

[

∫

[t,τ ]

ηs(D
l
s)

2 ds

]

+ Et,0,κ

[

∫

(t+∆t,T ]

Dl
s dΘ

l
s

]

.

The �rst term on the right-hand side is stritly negative (we are onsidering the seond ase) and

does not depend on T . Below we present a alulation showing that the seond term goes to zero as

T goes to in�nity, whih means that, for a su�iently large T , we onstruted a round trip strategy

with stritly negative ost, i.e. with stritly positive pro�t.

Relying on Assumption (A) we �nally show that

Et,0,κ

[

∫

(t+∆t,T ]

Dl
s dΘ

l
s

]

−−−−→
T→∞

0 (32)

for the strategy desribed above. Reall that D
l
τ+ = 0, hene D

l
t+∆t+ = 0. That is, for s ∈ (t+∆t, T ],

we have

Dl
s =

y − x

T − t−∆t

∫ s

t+∆t

Kue
−

∫

s

u
ρr dr du,

therefore,

Et,0,κ

[

∫

(t+∆t,T ]

Dl
s dΘ

l
s

]

= Et,κ

[

(y − x)2

(T − t−∆t)2

∫ T

t+∆t

∫ s

t+∆t

Kue
−

∫

s

u
ρr dr du ds

]

≤
const

(T − t−∆t)2
Et,κ

[

∫ T

t+∆t

∫ s

t+∆t

Kue
−

∫

s

u
ρr dr du ds

]

, (33)

where we used that the random variable (y − x)2 is bounded. Further,

Et,κ

[

∫ T

t+∆t

∫ s

t+∆t

Kue
−

∫

s

u
ρr dr du ds

]

=

∫ T

t+∆t

(

∫ T

u

e−
∫

s

u
ρr dr ds

)

Et,κ[Ku] du

≤
1

ρ̄

[

∫ T

t+∆t

Et,κ[Ku] du

]

≤ const (T − t−∆t).

Together with (33), we obtain (32). This ompletes the proof.

24



The results of this setion reveal a link between the models for two-sided limit order books: If As-

sumption 4.1 i) holds, then optimal strategies in the dynami spread model are of WR-BR struture

and pro�table round trip strategies do not exist in the zero spread model. If Assumption 4.1 i) is

violated, then optimal strategies in the dynami spread model do not need to be of WR-BR struture,

and round trip strategies in the zero spread model do not need to result in osts.

If only deterministi trading strategies are onsidered, then only the expeted evolution of K matters

and, in the ase µ(s, κ) is a�ne in κ, η̃s := 2ρs

Ks
+ µ(s,Ks)

K2
s

≥ 0 is su�ient to prevent free (or even

pro�table) deterministi round trip strategies. Sine ηs = η̃s −
σ2(s,Ks)

K3
s

< η̃s, we an have η̃s ≥ 0

while ηs < 0. For some stohasti models for K, we therefore have only stohasti pro�table round

trip strategies but no deterministi pro�table round trip strategies.

8 Conlusion

We propose a limit order book model with stohasti liquidity that aptures random �utuations of

the limit order book depth. If the stohasti liquidity in this model follows a di�usion proess meeting

ertain onditions, then optimal trade exeution follows the lassial wait region / buy region struture

often observed in limit order book models with stati or deterministially time dependent liquidity.

For other stohasti liquidity proesses, the optimal trade exeution strategy an take more general

forms; for example, multiple wait regions an our, and optimal trade sizes do not need to depend

monotonially on the size of the position that remains to be liquidated. The onditions for the wait

region / buy region struture also result in all round trip strategies generating positive osts even if

the zero spread model is assumed.
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