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Abstract

In financial markets, liquidity changes randomly over time. We consider such random variations
of the depth of the order book and evaluate their influence on optimal trade execution strategies.
If the stochastic structure of liquidity changes satisfies certain conditions, then the unique optimal
trading strategy exhibits a conventional structure with a single wait region and a single buy region
and profitable round trip strategies cannot exist. In other cases, optimal strategies can feature
multiple wait regions and optimal trade sizes that can be decreasing in the size of the position to
be liquidated. Furthermore round trip strategies can be profitable depending on bid-offer spread
assumptions. We illustrate our findings with several examples including the CIR model for the
evolution of liquidity.

KEYWORDS: Market impact model, optimal order execution, limit order book, resilience, time-
varying liquidity, profitable round trip trading strategies

1 Introduction

Liquidity is not constant throughout the day, but instead varies over time. Traders active in a
market are typically expected to continuously observe these changes in liquidity and adjust their
trades accordingly. Some part of the liquidity changes is driven by deterministic changes in expected
liquidity levels, e.g., daily and weekly patterns as well as expected changes around important points
in time such as news releases. These expected changes however do not explain liquidity variation
fully. An unpredicted component of liquidity changes remains which can dominate the deterministic
component.

We extend existing limit order book models and introduce a stochastic depth of the order book. In
this market, we consider an investor who wants to purchase a large asset position. If the order book
dynamics are driven by a general diffusion satisfying certain conditions, then we prove existence and
uniqueness of the optimal trade execution strategy. This trading strategy exhibits a wait region / buy
region structure with a single wait region and a single buy region. If the investor finds herself in the
wait region at a given point in time, then she does not place any orders at this point; if she is in the
buy region, then the investor buys just enough to bring her position from within the buy region to
the boundary of the wait region.
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If limit order book depth is not driven by a diffusion satisfying said conditions, then the classical wait
region / buy region structure with one region each does not need to hold. While optimal strategies
may still be described in terms of wait and buy regions, there can be more than one of these regions.
We provide several examples with such non-standard optimal trading strategies. Intuitively expected
features do not need to hold any more. For example, the trade size at a given point in time can vary
non-monotonically with the size of the remaining position: if a large or small position remains, then
no order is placed, however a purchase order is placed if the remaining position is of medium size.
To the best of our knowledge, a nonintuitive structure of such type in solutions of Markovian control
problems was never observed in the literature.

The condition ensuring wait region / buy region structure also guarantees that round trip trading
strategies cannot be profitable. If the condition is violated, then round trip strategies can generate
profits if the bid-offer spread is assumed to be zero; if a dynamic spread is assumed, then profits from
round trip strategies remain unavailable.

The majority of the optimal trade execution literature considers one of two different market models.
First, several models assume an instantaneous temporary price impact, e.g., Almgren and Chriss
(2001) and Almgren (2003). In these models, the temporary price impact at time ¢ is independent
of all orders executed at time prior to ¢ and does not influence any order at a time after ¢, which
greatly simplifies the analysis. Cheridito and Sepin (2014) and Almgren (2012) have studied stochastic
temporary price impact in this setting and provide numerical methods for calculation of the optimal
strategy and value function. In a second group of models, inspired by a limit order book interpretation,
resilience is finite and depth and resilience are separately modelled. Our model falls into this second
group. Due to the finite resilience of the order book, the execution price at time ¢ is influenced by
orders filled at times prior to t, and the execution at time ¢ in turn influences the execution price of
subsequent orders. Most of the existing literature assumes the liquidity parameters to be constant over
time, see, e.g., Bouchaud, Gefen, Potters, and Wyart (2004), Obizhaeva and Wang (2013), Alfonsi,
Fruth, and Schied (2010) and Predoiu, Shaikhet, and Shreve (2011). Alfonsi and Acevedo (2014),
Bank and Fruth (2014) and Fruth, Schéneborn, and Urusov (2014) allow for deterministic changes in
liquidity and are therefore closely related to our paper. Let us, however, point out that this paper is
qualitatively different from the aforementioned papers, and the main differences are as follows. Due to
the stochasticity in the depth of the order book, the optimal execution strategies in the framework of
this paper are no longer deterministic (the latter was the case in the aforementioned group of papers).
More surprisingly, the counterexamples to the wait region / buy region structure mentioned above
appear in the framework of our present paper only. To the best of our knowledge, Chen, Kou, and
Wang (2015) is the only paper considering stochastically varying limit order book depth. They provide
a numerical method for calculation of the optimal strategy and value function in discrete time with the
depth of the limit order book driven by a discrete Markov chain. In contrast, we focus on analytical
results in a continuous time setting with limit order book depth following a diffusive process.

Starting with Huberman and Stanzl (2004), profitable round trip strategies haven been studied in a
variety of market models by Gatheral (2010), Alfonsi, Schied, and Slynko (2012) and Klock, Schied,
and Sun (2014) among others. To the best of our knowledge, all existing literature on this topic
assumes deterministic liquidity.

The remainder of this paper is structured as follows. In Section 2] we introduce a limit order book
model with stochastic depth and derive basic structural features in Section Bl We prove existence
and uniqueness of optimal strategies as well as the wait region / buy region structure in Section @
as long as the stochastic dynamics of the limit order book depth obeys certain conditions. We apply
these results to several examples of diffusive processes in Section If the conditions of Section [
are violated, then the optimal strategy does not need to be of wait region / buy region structure any
more as we demonstrate in several examples in Section [6l In Section [, we extend our model to two
sided limit order books and investigate the returns of round trip trading strategies. We conclude in
Section [Rl



2 Model description

A limit order book model with time dependent depth was introduced in Fruth, Schéneborn, and Urusov
(2014). In this previous paper we explain the model in depth and provide an economic motivation.
In the following, we recapitulate the central components and notation and extend the model from
deterministic order book depth to stochastic order book depth.

The model is built on a filtered probability space (2, F, (Fs)sejo, 1], P). As usual in dynamic program-
ming we consider a general initial time ¢t € [0, T] below. For the evolution of the trader’s asset position
over time interval [¢, T], we consider the set of admissible continuous-time increasing strategies

Af = {0: Q x [t,T+] — [0,00) |
(Fs) — adapted, increasing, bounded, caglad with ©; = 0}

and denote & := AO; := B4 — O,. In particular, absolutely continuous trading as well as impulse
trades are allowed. A strategy from A{** consists of a left-continuous process (0s)scjy, 7] and an
additional random variable O with A©r = Op4 — ©1 > 0 being the last trade of the strategy.
Let us emphasize that admissible strategies are bounded by definition, that is, for © € A§*, we have
Or4 < const < oo a.s. (the constant depends on a strategy). Denote by

Agts(l') = {@ c Agts | Ory =2 a.s.} (1)

the admissible strategies that build up a position of = € [0, c0) shares until time 7" almost surely. For
the majority of this paper, we consider only one side of the limit order book (namely, the buy side)
and hence only include increasing strategies in A§*. As we will see in Section [7], selling cannot reduce
overall purchase costs if the bid-offer spread is influenced by the trader.

In addition to continuous time, we will also consider trading in discrete time, i.e., at times
O=to<t1 <..<tn=T.
In this case, we constrain our admissible strategy set to
Adis = {6 € A" | ©,=0o0n [t,t;)] and

Qs = Oy, + as. on (tn, tyt1) for n=n(t),....N — 1} C A"

with 7(t) := inf{n =0, ..., N | ¢, >t} and define
Als(z) .= {6 € A} | Oy =7 as.}

as the discrete analogue to AS*(z).

Let D be the price impact process, i.e. the deviation of the current ask price from its steady state
level, K the illiquidity process, and p the (time-varying) resilience speed.

Standing Assumption.

(i) K is a (possibly time-inhomogeneous) (Fs)-Markov process with state space (0, 00) and finite first
moments.

(ii) p: [0,T] — (0,00) is a strictly positive Lebesgue-integrable deterministic function.

The deviation Dj results from past trades on [t, s) in the following way

dDs = —psDsds + KsdOgs, Dy =39. (2)

That is, for s € [t,T],

Doz [ Ko omirgo, 1 ge I vut )
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and, taking into account the last trade AGr,

Dry = Kye~ i prirde,, + se= I pudu, (4)
oy

The process K describes the externally given dynamics of the order book depth ¢ := 1/K, while D
represents the movement of the order book block due to the trades of the large investor and the
resilience effect.

For any fixed ¢t € [0,T], 6 > 0 and & > 0, we define the cost function J(t,8,-, k): A5 — [0, 00] adl

J(O):=J(t,0,0,k) :=Ei 5. /
[t, 1]

(DS 4 %A@S> de,| . 5)
i.e., the expected liquidity cost on the time interval [¢,T] when D; = § and K; = x. While we do
not exclude the possibility of an infinite cost of a strategy © € A¢*, it is worth noting that, for any
O € A% the cost is finite due to our standing assumption. Starting with (&) we meet the following
notational convention, which will be used throughout the paper: P, ,; is the probability measure under
which the Markov process K starts at time ¢ from &, E; , is the expectation under P; ., and we write
E; s, for the expectation when the expression contains the process D and the starting point at time ¢

in (@) is ¢.

Let us now define our value function for continuous trading time U< : [0, T]x [0, 00)?x (0, 00) — [0, 00)
as

Us(t,6,x,k) ;== inf J(t,6,0,k 6

(1) = | inf J(06.0.5) ©)

and the wvalue function for discrete trading time as

U%s(t,8,x,k):= inf J(t6,0,k) > U6,z k). 7
()= il J(10,0.0) 2 USS(t 8.2 (7)

Denoting &, := &, = A©, , we can also write the discrete time cost integral as a sum

. K
wa(ta 57:07 H) = lnf Et,é,n Z (Dtn + %én) gn . (8)

Oc Al (x) S
Both value functions U = U and U = U%* fulfil the boundary conditions
U(T, 8z, k) = (5 ¥ g:c) ¢ and U(L,5,0,x) = 0. 9)
Going forward we will use U and A;(z) as a notation to indicate that the corresponding statement

holds for both the continuous and discrete time case. If a certain statement is referring to only one
setting, then we will explicitly use U** and A$** (x) respectively U4 and A% (x).

ILet us briefly recall how the right-hand side of (B comes into play. Let the best ask price process (As) be modelled
as As = AY + Ds, where the unaffected best ask price (A%) is a cadlag H!-martingale. Then, given that the limit order
book has the block form, the total cost of a strategy © € Agts(:v) is f[t 7] (AS + %A@Q dOs. A calculation involving
integration by parts reveals that the expected total cost equals
= Az + J(t,6,0,K)

K
Et,é,n [A%GT*F] + Et,&,r@ |:/ ] (Ds + 7A®S) dOg
t,T

’

with J(t, 9,0, k) given by (&) (notice that E; s f[t,T] ©5 dAY = 0 because A% is an H!-martingale and © is bounded).
The first summand in the latter formula describes the expected cost that occurs due to trading in the unaffected price.
This cost depends on the strategy © € A¢%5(z) only through the total number of shares = that the strategy acquires,
and, due to the martingale property of A%, the expression is trivial: the initial price times the number of shares. The
second summand in the latter formula describes the expected liquidity cost, which occurs due to price impact. This
cost significantly depends on the strategy and is the object of our study.



The following simple result is recalled from Fruth, Schéneborn, and Urusov (2014). It shows that our
formulas for the price impact and for the cost are economically sensible. This result will be essential
below.

Lemma 2.1 (Splitting argument).
Doing two separate trades ., s > 0 at the same time s has the same effect as trading at once
& =&, + &3, i.e. both alternatives incur the same cost and the same price deviation D, .

Proof. The cost is in both cases

K
7(62 + 2806+ £3)

K,
(Ds + 75) § = Dyl +&5)+

(D4 Ga) e+ (Dot KG+ 56 )6

and the price deviation Dy = D+ K(€, + £3) after the trade is the same in both cases as well. O

Finally, let us relate the setting in this paper with that in Fruth, Schéneborn, and Urusov (2014). To
this end, let the illiquidity coefficient be described by a deterministic strictly positive Borel function
k:[0,T] — (0,00). We introduce the cost and the value functions

Ji(1(©) (= Ju(y (£,6,0)),  Ugl(t,6,x), ULS(t,6,z)

similarly to ([&)—(®) using the illiquidity & in place of K. These are the corresponding cost and value
functions in Fruth, Schéneborn, and Urusov (2014) (notice that in this case, since k is deterministic,
the infima over deterministic and adapted strategies coincide). Again, we will use just the notation
Uk to indicate that the corresponding statement holds for both the continuous and discrete time case.
The following lemma is sometimes useful for performing comparisons with the case of deterministically
changing illiquidity.

Lemma 2.2 (Stochastic versus deterministic illiquidity).
Forallt €10,7],5 >0, x>0, k>0, we have

U(t,d,z,k) < UIEt,N[K(-)] (t,0,x).

Proof. U(t,d,x, k) is smaller than or equal to the infimum like the one in (@) respectively (), but over
deterministic strategies. The latter infimum equals Ug, , [k (.)(t,d,x) due to @) and (&). O

3 Definition of WR-BR structure

In this section we define the WR-BR structure (WR: wait region, BR: buy region) and derive funda-
mental properties. A detailed introduction of the WR-BR structure is provided by Fruth, Schéneborn,
and Urusov (2014); we therefore keep the exposition brief in this section. In particular, we do not
prove Proposition 32| below, since the proof is similar to the corresponding proof in the aforementioned
paper.

Before attacking the formal definition of WR-BR. structure, we note that the four-dimensional value

function U can be reduced by one dimension due to the following scaling property (its proof is straight-
forward).

Lemma 3.1 (Optimal strategies scale linearly).
For all a € [0,00) we have
Ul(t,ad,azx, k) = a*U(t, 8, , k). (10)

Furthermore, if ©* € Ai(x) is optimal for U(t, 9, x, k), then a©®* € Ai(ax) is optimal for U(t, ad, ax, k).



We will also need two useful results:

Proposition 3.2 (Continuity of the value function).
For each t € [0,T] and k > 0, the function

U(t,-,-,k): [0,00)* = [0, 00)
1S continuous.

Proposition 3.3 (Trading never completes early).
For allt €[0,T), 6 >0, z >0 and k > 0, the value function satisfies

U(t,d,z,k) < (5+ gx) x,

i.e. it is never optimal to buy the whole remaining position at any time t € [0,T).

Proof. The result immediately follows from Lemma and the corresponding result for determinis-
tically varying K, see Proposition 5.6 in Fruth, Schoneborn, and Urusov (2014). O

For ¢ > 0, we can take a = % and apply Lemma Bl to get

Ut,8,z,k) = 52U(t,1,§,n):52V(t,y,n) with (11)
xr
Yy = 5
V(ty,r) = UltLyx), V(Tyr) =y+3y% V(0.8 =0.

Going forward we will use V¢ and V4 where we need to differentiate between continuous and discrete
time settings. We now see that the function U(t,d¢is, , k) for some 64 > 0 or U(t, 6, fip, k) for
some zf;,; > 0 already determines the entire value function. In the following we will often analyze
the function V in order to derive the properties of U. Technically this does not directly allow us to
draw conclusions for U(¢,0,x, ), since, for § = 0, the ratio y = z/§ is not defined. The extension

of our proofs to allow the possibility § = 0 is however straightforward by a continuity argument (see
Proposition B.2)).

We first define the buy and wait region and subsequently define the barrier function.

Definition 3.4 (Buy and wait region).
For any ¢ € [0,T] and x > 0, we define the inner buy region as

K
Briy = {y € (0,00) |36 € (0,9): Ut Ly.w) = U (t. 1+ 5€y — &,1) + (14 5€) €}
and call the following sets the buy region and wait region at time t for the illiquidity coefficient x:
BR;, = Bri,, WR,:=][0,00)\Bry

(the bar indicates closure in R).

The inner buy region at time ¢ for illiquidity coefficient x hence consists of all values y such that
immediate buying at the state (1,y) is value preserving. The wait region on the other hand contains
all values y such that any non-zero purchase at (1,y) destroys value. Let us note that Brr , = (0,00),

BRyr, = [0,00) and WRyp,, = {0}. The wait region / buy region conjecture can now be formalized
as follows.



Definition 3.5 (WR-BR structure).
The value function U has WR-BR structure if there exists a barrier function

c: [0,T] x (0,00) — [0, o]
such that for all £ € [0,7] and x > 0,
Bry . = (c(t, k), 00)
with the convention (co,00) := ). For the value function U%* in discrete time to have WR-BR

structure, we only consider t € {to,...,tx} and set c?*(t, k) = oo for t & {to,...,tn}

It is worth noting that the barrier can be infinite even in continuous time or in discrete time at time
points tg,...,tx—1, that is, there can be certain ¢t and &, for which it is never optimal to perform a
block trade, regardless of how large the remaining position is. We refer to Propositions 5.8 and 5.9
in Fruth, Schéneborn, and Urusov (2014) for sufficient conditions for infinite barrier in the case of
deterministically varying K.

Let us remark that we always have ¢(T, k) = 0. On the contrary, the barrier is always strictly positive
for t € [0,T) (whenever the value function U has WR-BR structure):

Proposition 3.6 (Wait region near zero).
Assume that the value function U has WR-BR structure with the barrier c¢. Then, for any t € [0,T)
and > 0, we have c(t, k) € (0, c0].

Proof. Assume that for some ¢ € [0,T) and x > 0 we have c(t,x) = 0. Let us fix some y > 0 and
define

Ei=swp{¢e 0,y | UMLLy.R) =Ult1+rEy—&m) + (1+5€) €} <.

Since U(t, -, -, k) is continuous (Proposition B.2), we get
Ut,1,y,8) = ULt 1+ 1y — Em) + (14 5€) € (12)

If £ < y, then, due to the scaling property of Lemma B.I] the fact that (y — &)/(1 + x€) € Bri,
and the splitting argument of Lemma 2.1} we arrive at a contradiction with the definition of {. Thus,
¢ =y, but then formula (I2]) contradicts Proposition This completes the proof. O

The following proposition characterizes the WR-BR structure and will be needed for some of our main
results.

Proposition 3.7. (WR-BR structure is equivalent to trading towards the barrier).
Assume that for each (t,0,x, k) there exists a unique optimal strategy

(GZ(t’ 0, 2, ﬁ))sG[t,T] € At(x)

Then the following statements are equivalent.
(a) The value function has WR-BR structure.

(b) There exists ¢ : [0,T) x (0,00) — (0,00] such that for all (t,9,z, )

. B x —c(t, k)4
AOj(t, 0, x, k) = max {0, 5 et 1) } . (13)

In particular, AOF(t,0,x, k) is continuous in § and x.

(c) For all (t,6,k), the function x — AO;(t,9,x, k) is increasing.



Proof. First we prove the equivalence of (a) and (b). Statement (c) follows immediately from (b). We
conclude by showing that (c) implies (b). The scaling property (Lemma [3.1)) yields

AO(t, 6,2, k) = SAO} (t, 1, % n) .

Therefore we only need to discuss the case § = 1. Fix arbitrary ¢ € [0,T], x € (0, c0).

(a) = (b) The assertion holds for x = 0. Assume z € (0, ¢(t, x)]. Then the WR-BR structure implies
that for all £ € (0, z)

Ut 1,2,5) < U (61 + &0 — & 0) + (1+5€) &

Therefore it cannot be optimal to trade immediately at time ¢.

Assume c(t,x) < oo and x € (c(t,x),00). Then the WR-BR structure implies that there
exists € € (0,x) such that

Ult,l,z,k)=U (t,1+n£,x—£,n) + (1 + gé) g
Due to the uniqueness of the optimal strategy, we get
AO;(t,1,z, k) = §~+A®: (t,1+n§~,x—§,n) > 0.

For € < ler—ch((té:;)), we have 1z+;,f£ > ¢(t, k) and thus

AOF (t,1+n§~,zf§~,n) > 0.

Consequently, AO; (t,1,z,k) > 1%;06(87'2). Two trades executed immediately after each other
have the same effect as one trade of their combined size (see Lemma 2.1]). Due to this splitting

argument, we have

z— c(t, k) x — c(t, k) x —c(t, k)
AOF(t,1,2,k) = ——— =% + A0 (1,1 B '
t(’ ,x,lﬁl) 1+[{,C(t,f{)+ t() +l€1+[{,0(t,f{)’x 1+Hc(t,ﬁ)’l‘i

Observe that the second summand equals zero because

T — z—c(t,k)
1+rke(t,k) _ C(t :‘ﬂ)
14k z—c(t,K) [
1+ke(t,k)

(b) = (a) Assume z € (0,c(t,x)]. Then ([A3) implies AO; (¢, 1, x, k) = 0. Together with the unique-
ness of the optimal strategy we can therefore conclude that x ¢ Br ., since for all £ € (0, z)

Ut 1,2,5) < U (61 + €0 — & 8) + (1+5€) &
Assume c(t, k) < oo and z € (c(t, k), 00). Then (I3) implies
AO;(t,1,z,k) € (0,x).
The optimality of ©* leads to the conclusion x € Bry , since

Ut,1,x,6) = U, 1+rAO;(t,1,z,k),z —AO;(t,1,z,K),K)
+ (1 + gA@;(t, 1,:0,,.@)) AO:(t,1, 1, k).



(c) = (b) Define
c(t, k) :==inf {z € (0,00)|AO; (¢, 1,2,K) > 0} .
We are done for c(t,k) = oco. Let c(t,k) < oco. Then the definition of c(t,x) guarantees
AO;(t,1,z,k) = 0 for all x < ¢(t, k), and Property (c) implies AO}(¢,1,2,x) > 0 for all
x > c(t, k). Suppose for a contradiction that

AO; (t,1,c(t, k), k) > 0.
Due to the uniqueness and the splitting argument, we then have, for € € (0, A®; (¢, 1,¢(t, k), K)),
AO; (t,1,c(t k), k) = e+ AO; (t,1 4+ ke, c(t, k) — €, k) = € < AOF (¢, 1,¢(t, K), K) .
Therefore, AG;(t,1,z, k) = 0 for all x < ¢(t, ).

We still need to prove AO;(t,1,z,K) = % for x > c¢(t,k). Let us first assume that

AO(t, 1,2, k) > % Once more, we make use of the uniqueness and the splitting argument
in order to get a contradiction

. oz —c(t,k) . x —c(t,K) x —c(t, k)
ABL(t L a,k) = 1+ ke(t, k) + A0 (t’ L+ "7 ke(t, n)’x 1+ nc(t,n)’ﬁ
x—c(t, k)
= —2 < AOj(t,1 .
[T et n) ~ 2O L2R)

. —c(t, . w—AOI(tlz, . .
Finally, assume AO;(t,1,x, k) < %((t% That is, Wm > ¢(t, k) and we again arrive
at a contradiction:

AO;(t,1,z,k) = AO;(t,1,z, k) + AO; (t, 14+ kAO;(t,1,2,K), 2 — AO}(t, 1,2, K), H)
> AO;(t, 1,2, k).

4 The WR-BR theorem

In this section we show that the value function exhibits WR-BR structure if K is a diffusion satisfying
the following assumption.

Assumption 4.1. (Special diffusion).
K is a (possibly time-inhomogeneous) diffusion

dK, = p(s, K)ds + o(s, Ko) dWE, K, =k >0, (14)

for an (F;)-Brownian motion WX and 1,0 [0,7]x (0, 00) — R such that, for any initial time ¢ € [0, 7]
and starting point K; = k > 0, the stochastic differential equation has a weak solution which is unique
in law, is strictly positive and has finite first moments. Furthermore, for all ¢t € [0,T] and x > 0, we
have

i) me =24 u(?é(s) — UZ(IS(’EKS) >0 P, x pp-ae on Qx[t,T] (ur, denotes the Lebesgue measure),

2
.. sups s, ) K5
i) E¢ {7%55”1] | <00,

iii) E¢ . KfOT [7s] ds) (SUPse[t,T] K?)} < 00.



In Section [7 below we study profitable round trip strategies without assuming that the process 7 is
positive, but we will need part iii) of Assumption @I} That is why we write absolute value of 7 in iii).

Theorem 4.2. (WR-BR theorem).
If Assumption[{.1] holds, then there is a unique optimal strategy, and we have WR-BR structure.

In fact, we will see in the proof that existence and uniqueness of the optimal strategy both in dis-
crete and continuous time as well as WR-BR structure in discrete time hold under parts i)-ii) of
Assumption [l We need part iii) only for WR-BR structure in continuous time.

We prove Theorem in two steps. In Subsection 1] we show that Assumption 1] ensures strict
convexity of the cost functional J in the strategy, which in turn guarantees existence and uniqueness
of the optimal strategy. As we show in Subsection 2] the uniqueness excludes WR-BR-WR, and
other situations: at any upper boundary of a buy region it must be equally optimal to wait as it is to
execute the strictly positive trade to the lower boundary of the buy region. We first pursue this line
of argument for the discrete time case and then transfer it to continuous time and thus do not use the
Hamilton-Jacobi-Bellman equation.

Part i) of Assumption [£1]is the most critical in the proof since it is directly linked to the convexity
of J. As we will see in Section [0 it is also related to the absence of profitable round trip trading
strategies in a two-sided order book model. Parts ii) and iii) of Assumption [£1] are required for more
technical aspects of our proof.

Theorem does not, cover all models which result in a WR-BR. structure In Section B we provide
examples violating the WR-BR structure, highlighting that some assumptions on K are necessary to
guarantee a WR-BR structure.

4.1 Existence of a unique optimal strategy

Under Assumption 1] we show in Lemma 3] that J(©) is strictly convex. This guarantees the
uniqueness of an optimal strategy provided it exists. We can then use the convexity together with the
Komlés theorem to finally get the existence of an optimal strategy in Proposition 44l

Lemma 4.3. (Costs are convex in the strategy).
Let Assumption[{.1) hold. Then, for allt € [0,T], 6 > 0 and k > 0, the function J(-) = J(t,0,-,K) is
finite and strictly convex on Ay.

Proof. Let ¢, § and & be fixed. Clearly, Assumption [£1]ii) implies E; , sup,ep, ) Ks < 00, hence J()
is finite on the whole A;. We demonstrate below that

1 D% 52
J(O)=ZFE;s, | —= — — sD2d 15
©) Qt,a,[KT ], w0 (15)
with (n,) as in Assumption {111). The right-hand side is strictly convex in the process (Ds)se[s,7]-
Thus, for two different strategies ©’, ©"” € A; with corresponding D’, D" both starting in D, = D} =4,
we have D(v®' + (1—v)0") =vD' + (1 —v)D"”, hence J(vO®' + (1 —v)0") < vJ(O')+ (1 —v)J(O")
for all v € (0,1) as desired. Hence, we only need to show (I5).

Define the local martingale M := f[t,sAT] D‘z‘%“’;”)de for s € [t,00). Thatis, 7, = {s >t | (M), >
n} is an increasing sequence of stopping times such that 7, /* co a.s. and M™ is a martingale for

2Restricting trading to only two points in time is an example which always has WR-BR structure irrespective of
Assumption Il Furthermore, in the case of deterministically varying K we always have WR-BR structure in discrete
time and, for continuous K, in continuous time, see Fruth, Schéneborn, and Urusov (2014).
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every n. In particular, E; 5 .[Mrar-,] = 0. Due to the monotone convergence theorem and 7, > 7' a.s.

for large n,
/ <DS + §A®S> dO;
[t, T A7) 2

Using d©, = w and AQ, = 8L we get

J(O) = lim E¢s

n—oo

. (16)

K
D, + LAD, .D? L1AD;psDy
J(©) = lim K., / LT s D, + p—‘sds—i—/ 227sPs s )
n—00 [t, T AT K £ rar) K (6. TAn] K,

The last integral is zero, since D has at most countably many jumps. With integration by parts for
caglad processes,

D2 2 2
/ &dDé _ (TATR)+ o 6_ . / Déd 2 _ Z (ADS) )
[ K [t, TATy] K s K

t2am] K K(@nr) selt,TAr,)  °

Use d (%)s = %Sst + Dsd (%S) and rearrange terms to get

D, 1 ( Dirnrye 82 ! (AD,)?
E2dDy = = | At Z DX —) -
/ ' K 2 K /[t,TA‘rn] ° <K5> Z K

K(T/\T") s€[t,TATy]

Applying 1t6’s formula

1 02(55KS) ,LL(S’KS) U(SvKS) K
d(?)( ko ok )P ke

S

yields

K, 1 [ DZrns 52
/ <DS + —A@S) 1 PR i U L +/ nsD2ds + M, | .
[t TAT] 2 21 Krar, K [t, T AT

The assertion follows, since Lebesgue’s dominated convergence theorem together with Assumption[.T]ii)

guarantee
D2 D2
(TATR)+ T+
E K ]E K bl 17
b l K1, ] oo {KT} (17)

while, by the monotone convergence theorem, we have

Et,m/ nsD3ds —>Et,57,€/ nsD3ds| . (18)
[t, T ATy n—00 [t,T)

Proposition 4.4. (Existence and uniqueness of an optimal strategy).
Let Assumption [{.1] hold. Then, for all t € [0,T], 6 > 0, z > 0 and k > 0, there exists a unique
optimal strategy, i.e. there exists a unique ©* = ©*(¢,4,xz, k) € A¢(x) with

J(t,é,@*,m)z@ iﬁf( )J(t,(s,@,fi).
€A (z

Proof. Thanks to Lemma 3] we only need to prove existence. Let ¢, § and k be fixed. We start by

showing that there exists a sequence of strategies (@n) C Ai(z) that converges in some sense to a
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strategy ©* € A;(z) and minimizes the cost J, i.e. lim;, o0 J (@n) = infge,(2) J(©). We conclude
by deducing that lim,, ., J(©") = J(©%).

Let (©7) C Ai(z) be a minimizing sequence for J. Due to the Komlés theorem in the form of
Lemma 3.5 from Kabanov (1999), there exists a Cesaro convergent subsequence (©7m). That is,

1 n
0" .=~ eim
w2
m=1
converges to some strategy ©* € A; in the following sense. For P; .-almost every w, the measures
©"(w) on [t,T] converge weakly to the measure ©*(w). In what follows we call such a convergence

-n

pathwise weak convergence in time. Equivalently, for almost every w, we have lim,_,~ O, o
whenever s € [t, T] with A®7 = 0. We set ©7, = x redefining ©7. if necessary. Notice that this does

not disturb the weak convergence. Thus, ©* € A;(z). Moreover, (@n) C A:(x) is again a minimizing
sequence for J, since J is convex.

It remains to show that ©* attains the infimum. Applying (I5) yields

2
an _ 1 (D%-i-) 52 n\2
J(@ ) = EEt,S,n lTT T +/[t,T] ns (DY) ds| , (19)
2
1 (Dry)” & / 2
J(0F) = ZEya,. |18l 07 (D)2 ds| 20
©) = 15 [ el S [ 20

where D" and D* are the price impact processes that correspond to ©' and ©*. By the (pathwise
weak in time) convergence of 0" to ©*, for almost every w, we get lim,,_,o, D7 = D} for every point
s € [t,T], where ©* is continuous, as well as for s = T+ Fatou’s lemma and (I9)-(20) now imply

J(0*) < liminf, o J (@n), which means that ©* is an optimal strategy. O

4.2 Wait and buy region structure

Under Assumption 1], we will now exploit the uniqueness of the optimal strategy to prove WR-BR
structure. Proposition treats the discrete time case, which is then transferred to continuous time
in Proposition (4.8l

Proposition 4.5. (Discrete time: WR-BR structure).
Let Assumption [{.1] hold. Then the value function U%* has WR-BR structure.

Proof. According to Propositions B and 4] we only need to show that the optimal initial trade
AOf (tn,d,,r) is increasing in z, where ©* denotes the corresponding optimal strategy. Due to the
scaling property of the value function (Lemma [B.1]),

A®} (tn,d, 7, k) = 0AO], (tn, 1, % n) .

Due to the splitting argument (Lemma[2T) and the uniqueness of the optimal strategy, A®; (t,,1,-, )
must be increasing and continuous apart from a possible discontinuity in the form of a jump back to
zero. That is there might exist y > 0 with A®; (t,,1,y—,x) > 0 and AO} (t,,1,y+,x) = 0. In the
following, we exclude such discontinuities using a Komlés argument as in the proof of Proposition 4.4l

Suppose for a contradiction that such a discontinuity exists in y > 0. Let us take some monotone
sequences y'7 'y and y?7 \ y and define ©%7 := ©*(t,,,1,y"7, k) for i € {1,2}. Let us choose € > 0

3See also Lemma 7.3 of Fruth, Schéneborn, and Urusov (2014).
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such that A@%;Lj > € > 0 for all sufficiently large j. Without loss of generality we assume that the
latter inequality holds for all j. Since V9 is continuous in y (see Proposition 3.2,

1 1,5 _ dis 1,5 dis .
J(tna ,("‘) ali) Vv (tnay ali) j—>oo} Vv (tnay)l{)
Define bj := ~#5 (1. Then we have

0 < J (tn, 1,0;0" k) = J (tn, 1,07 k)
< J (tn, b, 0,07 5) = J (tn, 1,0 k) = (b] — 1)J (tn, 1,0, k) —— 0.

j—o0

Therefore, (bj@lvj ) is a minimizing sequence of strategies that build up the position of y shares,
ie., b;0M € Afs(y) and

lim J (tn, 1,b;049, m) =V (¢, 9, k).

‘]*}OO
As in the proof of Proposition @4, we can define © € Af**(y) as the pathwise weak in time limit of
the averaged sum over a subsequence of (b;0"7) such that J(t,,1,0,r) = V¥(t,,y, k), i.e. © is an
optimal strategy. Due to the construction of ©, with € > 0 from above, we have

AOy, (tn,1,y,k) > €> 0.

Similarly, one constructs an optimal strategy CXs Afzs(y) using the sequence (yé’ -©2J ) of strategies

with zero initial trade. Since we now treat the discrete time case, the initial trade remains zero also
in the weak limit: _
AO;, (tn,1,y,k) = 0.

Thus, © and © are different. This contradicts the uniqueness of the optimal strategy. O

The line of argument used in the preceding proof does not extend directly to continuous time. Let
us also notice that we did not yet use part iii) of Assumption LIl We now transfer the discrete time
result of Proposition to continuous time in Proposition .8 using the approximation techniques of
Lemmas and 7 and we will now need part iii) of Assumption AT}

Lemma 4.6. (Approximation via step functions).
Let Assumption [[.1] hold. For © € AS(x), let ON € A% (x) be its approvimation from below by an
equidistant grid step function. More precisely, define T,* := {t, T},

T—t
e (s Bt ar s e )

and
0 if s=t
O =9 Our ifsc (uut I, ueT?y
T if s=T+

Then J (t,1,0,k) = imy_y00 J (t, 1,0%, n).

Proof. We proceed as at the end of the proof of Proposition [£.4l That is we only need to show
that © converges pathwise weakly in time to ©. Due to ;N < 7,"™!, © is increasing in N. For
all s € [t,T+], the sequence (@éV)NeN is bounded above by ©;. Hence, it is convergent. Due to the
definition of ©, we must even have limy_, o, O = O, for all s € [t,T] with A©4 = 0. Now the result
follows from (I3 and the dominated convergence theorem (apply Assumption E1]ii) and iii)). O
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Lemma 4.7. (Cesaro weak convergence).
Fizt € 10,7,k € (0,00) and for various x € [0,00) consider

(@N (t,1,2,K)) C A ().

NeN
Then there exists a subsequence N;(t, k), which does not depend on x, and o set of strategies O(t,1,-, k)
such that for all x € [0,00) NQ

1 & .
— Z@Nf (t,1,2,k) ——— O (t,1,2,K). (21)
m 4 . m—oo

j=

In ZI) the notation “—” stands for the pathwise weak convergence in time (cf. the proof of Propo-

sition [{4).

Proof. Since Q is countable, we can write [0,00) N Q = {1, 2, ...}. For each x € [0, 0), the Komlos

theorem guarantees the existence of a subsequence Nj (¢, z, ) such that the desired pathwise weak

)

convergence in time holds. That is we get (N, ;1)) jen C Nfor z; and extract the subsequence IV, ;2 for x4

from N ;1), etc. We remark that the Komlos theorem gives not only Cesaro convergent subsequences,
but subsequences such that all their subsequences are Cesaro convergent to the same limit. The

Cantor diagonal sequence N; := Nj(j) then guarantees the Cesaro weak convergence of ©i (t,1, x, k)
for all z € [0,00) N Q. O

Proposition 4.8. (Continuous time: WR-BR structure).
Let Assumption[{1] hold. Then the value function U** has WR-BR structure.

Proof. As in the proof of Proposition 5, we only need to exclude the jump back to zero of z —
AO;(t,1,z,k). Let ©F € A% (x) be the approximation of ©* € Af*(z) by step functions from below
as in Lemma [£.6] Then
J(t,1,0%, k) = lim J(t,1,0", k).
N —o00

Let ©*Y be the unique optimal strategy within A% (z) for the time grid 7,7V, i.e.
J(t1,0N k) > J(t,1,0N k) > J(t,1,0%, k).

Hence,
J(t,1,0%, k) = lim J(t,1,0"" k).
N—oo

That is, for each = € [0,00), ("N (t,1,z,k))nen is a minimizing sequence, and for each N € N, z
AO;N(t,1,z, k) is increasing thanks to Proposition

Apply Lemma BT to ©*N(t,1,z, k) (for all rational ). The resulting strategy O(t, 1, z, x) as in (1)
is optimal (apply convexity of the cost function together with (I8) and the dominated convergence
theorem). Since the optimal strategy is unique, é(t, 1,2, k) must coincide with ©*(¢,1,z, k) for all
x € [0,00) N Q. Furthermore, since we already proved WR-BR structure in discrete time, for all N
and s € [t,T], the function z — OV (¢,1,x, k) is increasing. Due to the pathwise weak convergence
as in (2I)), for all s € [t, T, the function x — ©*(¢, 1, x, k) is increasing over rational z. In particular,
r— AO(t,1,2,k) = O7,(t,1,z,K) is increasing over rational x. Since we only need to exclude the
downward jump, it suffices to have this monotonicity over the rational numbers. O
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5 Example models with WR-BR structure

By Theorem 2] any model satisfying Assumption @I has WR-BR structure. In this section, we show
that Assumption [£1]is satisfied by several standard processes. We start with deterministic K.

Proposition 5.1. (Deterministic case).

Assume that K: [0,T] — (0,00) is deterministic and two times continuously differentiable, p: [0,T] —
(0, 00) is continuously differentiable with K, +2p,K; > 0 for allt € [0,T]. Then Assumption[{-1] holds,
and the value function has WR-BR structure.

Proof. Condition i) is equivalent to K, + 2p:K; > 0, and ii), iii) are clearly satisfied for deterministic
continuous K. O

Let us now turn to a time-homogeneous geometric Brownian motion (GBM). Notice that, due to the
homogeneity in time, it is enough to verify the conditions in Assumption @I only under measures Py .

Proposition 5.2. (GBM case).
Let K be a geometric Brownian motion

dK; = iK;dt + 6K, dWr, Ky=r>0.

Consider a constant resilience py = p > 0 such that 2p+ i — 52 > 0. Then Assumption[{_] holds, and
the value function has WR-BR structure.

Proof. i) We have n; = ;% (2p+m—3a%) >0.

ii) Set ¢; := K% Thanks to Holder’s inequality,

2 L N
E (Supte[O,T} Kt) - K 2 . .1 (22)
w | T 7 | S Lok | Sup s | Sup g .
0 infiep0,77 Kt 0 e 0 re0.1]
.. . EWtK-i-(ﬁ—%)t .
The explicit formula for GBM, K; = Kye , yields

EO,I{

sup Kf] < n4max{1,e4(“%)T}Eoﬁ,{ lexp (45 sup Wf)] .

t€[0,T] te[0,T]

The latter expression is finite due to the fact that (sup;c(o ) W/*) has the same distribution as [W7*|,
which is a consequence of the reflection principle for a Brownian motion. The second expectation
in (22)) is finite, since ¢ = K% is also a GBM (with drift (52 — ji) and volatility 7).

iii) Due to the form of 7, it is enough to consider

2
E /T k) Ll <rs (sopicon 1)
K sup - > N e ———
0 o \tefo,T] " K, 0 infiepo, 1 Kt

where the right-hand side is finite according to ii). |

See Fruth (2011) for alternative conditions ensuring WR-BR structure in the GBM case. We conclude
this section with the Cox-Ingersoll-Ross (CIR) process. This process is particularly appealing from
the economic point of view due to its mean reversion

4See Fruth (2011), Section 3.3, for numerical illustrations of WR-BR barriers, optimal trading strategies and cost
distribution functions for K being a CIR process.
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Proposition 5.3. (CIR case).
Let K be a Cox-Ingersoll-Ross process

dK; = (K — K;)dt + 6/ K dWE, Ko=#k >0,
where K, fi,& > 0. Consider a constant resilience p; = p > 0 such that
25 > i > 25° /K.

Then Assumption[{.1] holds, and the value function has WR-BR structure.

Proof. Such a CIR process stays a.s. strictly positive, as the Feller condition aK > 52/2 is met.
Moreover, it turns out that n; = %(2ﬁfﬂ)+ % (K —&?%) > 0 due to our assumptions. Conditions ii)
t

and iii) both hold by showing
2
(SUPte[O,T] Kt)

< 00.
(infiepo,7) Kt)2

EO,/{

Thanks to Holder’s inequality, with ¢; = K%, we have

2
(SUPte[O,T] Kt)

EO,I{
(infief0,79 Kt)2

<Fox | sup K}
t€[0,7)

1 4
Eo., l sup qﬂ . (23)
t€[0,T

Since the drift of the CIR process is bounded above, we can isolate the local martingale part of K and
use the Burkholder-Davis-Gundy inequalitiesﬁ With appropriate positive constants ¢,,, we obtain

t 8
EO,,{lsup Kf] < al{nh(ﬁfm)ﬁl@o,,{ sup /5\/KSde H (24)
te[0,T] tel0,T] 10
— 8 T 4
< & k¥ + (AKT) +Eo, </ 62K5d5>
0

The latter expectation is finite because all positive moments of the CIR process are finite (see, e.g.,
Filipovic and Mayerhofer (2009)).

It remains to show that the second term on the right-hand side of (23] is finite. By It6’s formula, the
process q; = K% has the dynamics

dg, = (fiq: — (3K — %) ¢}) dt — oq; AW/

With these preparations, we proceed similarly to (24)):

ty .
/6(15 dW
0

7

s 0T B [
Eox | sup ¢f | < @3dn i+ ,%7,2 + Eo,x | sup
ref0.7] 4 (iK - 5?) teloT)

8 r 4
_o 3 T 3
_ .-} pT ~2 3
< ¢ K3+ —m—-—— + Eg / o Sds
‘ (4(NK—U2)> B < 0o 7 )

5For every m > 0, there exist universal positive constants k., and K, such that

t

2m
kmE [(M)7] <E [(mg ) ] < KmE [(M)7]

for every continuous local martingale M with My = 0 and every stopping time 7. See, e.g., Karatzas and Shreve (2000),
Chapter 3, Theorem 3.28.
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We are done, since Eg , {(fOT q ds)ﬂ < s fOT Eo .[¢%] ds, and the fourth moment of the inverse CIR

process is finite whenever K > 252 (see, e.g., Ahn and Gao (1999) for an explicit calculation of
negative moments of the CIR, process). O

6 Example models without WR-BR structure

In this section, we provide examples that do not follow the WR-BR structure. In particular, we
show that cases of WR-BR-WR structure can occur: when a large number of shares remains to
be purchased, we may find that it is optimal to wait in spite of buying being optimal if a smaller
number of shares is remaining. We first consider a tractable model with two scenarios and thereafter
provide numerical results for a CIR model in discrete time. All of our examples are in discrete time
with trading occurring at three points in time. The following proposition establishes that WR-BR
structure always applies if trading occurs at only two points in time.

Proposition 6.1. (WR-BR structure for two trading instances).

t
Let N=1,ie 0=ty <t =T, and denote ag := e Jio P4 Then the value function has WR-BR
structure with

is 1 [(]Eto,m[KT]_Kao)y—(l—ao)]z .
VI (to,y, k) = SEeu[Krly? + aoy — 2+ 2B, < [Kr]—drao if y > c(to,r) L
2 0 otherwise

c(to, k) =

1-— .
WM if Biyu[KT] > Kag -
o0 otherwise

Proof. We know that U%*(t1,8,z, k) = (6 + Zx)x. The assertion follows from

dis _ : E dis _
U (t07551‘ﬂ’i) 752&%]{(54» 2§)§+Eto,ka [U (t15(5+’i§)a051‘ gaKT)]}

O

Note that we have not made any specific assumptions on the distribution of K in the proof of
Proposition

6.1 A model with two scenarios in discrete time

Let us assume that the process K is not driven by a diffusion, but instead is given by a finite number
of scenarios. The case of a single scenario implies a deterministic evolution of K which always results
in a WR-BR structure. We therefore focus on the second simplest case of two equally likely scenarios
A and B, ie. Q = {wa,wp}, and consider three trading instances {tg,t1,t2}, i.e. N = 2. To fully
specify this two scenario model, we need to choose seven constants
_rta _ [tz

ap:=e ’' deS; ay i=e€ ftl desa Ko, ’1114 = Ktl (WA) ) Héq = Ktz (wA)ﬂ KlB = Ktl (wB)v KQB = KtQ (CUB).
Proposition 6.2. With the parameter values given in Figure[d, the optimal strategy is of WR-BR-
WR structure, i.e., there are two threshold values 0 < ¢, < ¢; < 0o such that the buy region at time
to is given by Bry, = (cu, ¢l
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Ko=1.95

A_ A_
k1=1 Ky=1

2,=0.9999 2,205

Figure 1: Seven constants that specify the two scenario model with three trading instances.

Proof. The optimal strategy is determined by &, & and £P. Since c(t1, ki) = c(t1, kP) = 1 =: ¢(t1)
by Proposition [6.1] we see that &' > 0 if and only if ¢8 > 0.

Let us now consider a given trade &, at time ¢y, and assume optimal trading thereafter. This results
in a cost of

Ud”(to, 8,2, k0; o) = (5 + %fo) &+ E [Udis(tl, (6 + Ko&o)ao, x — &o, m)] :

It is easy to see that U%* is piecewise quadratic in &. For the section of & where the optimal &; is
positive (& > 0), a straightforward calculation shows that the quadratic coefficient is negative. U%
therefore cannot attain its minimum in the interior of this section; the optimal strategy therefore
satisfies o =0, & =0or § =& = 0.

Using Proposition [6.1] we easily calculate that for trading only at times ¢y and to, we have
cr = c"3(ty) < 1/ag = c(t1)/ao.

Hence (¢;, 1/ag] must be a subset of the buy region Br,. For y > ¢(t1)/ao = 1/ag, we need to compare
the cost U%2 of optimally trading only at times tg and ¢y with the cost U2 of optimally trading only
at time ¢; and t. Using the parameter values given in Figure[I] we find that the quadratic coefficient
of U%? is larger than the quadratic coefficient of U1:2; therefore there must be an intersection point
cu > ¢; where UL2 = U%2. We then have for y < ¢; that U2 = U%?2 and the optimal strategy trades
neither at ¢y nor t1, for ¢ < y < ¢, that U%? < U%? and the unique optimal strategy trades at tg
but not at t;, for y = ¢, that U%2? = U2 and there are two optimal strategies (one trading at ¢y but
not t1, and one trading at ¢; but not t¢), and for y > ¢, that U%2? > U2 and the unique optimal
strategy trades at ¢; but not at #g. |

To illustrate the dynamics of the optimal strategy, we take different = and plot
& U (to,1,2,1.95;€)

in Figure 2l When the total order is as small as z = 0.9, it is optimal not to do an initial trade. The
transition from wait to buy region is approximately at x = 0.95. For z = 1, we are in the buy region
and one optimally trades about two percent of the total order at time tg. But at x = 5.75, we switch
from buy to wait region and stay in the wait region for all larger values of x. The graph for x = 5.75
illustrates the non-uniqueness of the optimal strategy at the transition from buy to wait region.

Intuition might suggest that the larger the remaining position = at time tq, the larger the initial
trade . The downside of trading at time ¢g is that the full initial impact ¢ is influencing the cost
functional (at later points in time this initial impact is partially decayed already). The upside is a
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more balanced distribution of new impact across an additional time point (any impact generated at
time tg will already be partially decayed at time ¢1). These two effects are the only drivers in the
case of deterministic K, and the second effect grows faster in the remaining position = than the first
effect. If K evolves stochastically, then a third effect comes into play: trading at times after ¢y can
respond to new information gained about K (such as whether scenario A or B occurred). This effect
can dominate the second effect for large remaining positions x.

Costs Costs

1.0582 1.2501
Lossol 1.2500
1.24¢
10578 »
1.2498
10576

S S S U T S S S
0.005 0.010 0.015 0.020 6 0.01 0.02 0.03 0.04 6

|x:5.75—> Buy or Wait
Costs Costs

2560} F
r 279.51
2550} 21901
i 2785F
25581 2780F
[ 2775F
25571 F
[ 277.0F
25560 2765F

L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L
05 1.0 15 f ) 2 4 6 8 10 f

Figure 2: For the parameters from Figure [ and total order size z = 0.9, 1, 5.75, 20, the graphs plot the
dependence of the costs U (to, 1,z,1.95; &) on the initial trade €.

Let us now analyze the situation for different values of kg while keeping the other model parameters
including k%', kP, x4 and % fixed. Figure [ indicates for each point (k¢,z) if it belongs to the buy
or wait region. It is created by computing the optimal initial trade &(kg,x) of U%S (tg,1,x, ko; &)
analytically. WR-BR-WR structure occurs for kg € (1.94,2). The upper barrier from buy to wait
region has an asymptote at xo = 1.94. For the case ko = 1.95 that we discussed in Figure[2 the small
dots on the right-hand side of Figure Bl point out the transitions from wait to buy region and buy to
wait region respectively. For expensive ko > 2, we are not trading irrespectively of the size of the total
order. For inexpensive kg < 1.94, we have the usual WR-BR situation. On the interval in between,
the large investor has an incentive not to trade for large positions x. The resilience between ¢y and ¢;
is extremely low and waiting until ¢; has the advantage of gaining information whether scenario A
or B has occurred. That is there is a tradeoff between gaining information by waiting until the next
time instance and attracting resilience by trading right now.

The two scenario model in this section can be approximated by a diffusive model that has almost half
of its scenarios arbitrarily close to scenario A and almost another half arbitrarily close to scenario B.
For such a diffusive model it can be shown that it does not exhibit a WR-BR structure.
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Figure 3: For the parameters from Figure[I] but different values of xo, we illustrate the wait and buy region.
Looking more closely at the large dot (ko,z) = (2, 1) yields the picture on the right-hand side. The buy region
has the shape of a wedge.

6.2 Cox-Ingersoll-Ross process in discrete time

In Section Bl we have considered examples of diffusive models and shown that they have WR-BR
structure if certain conditions are met. For the case of the CIR processﬁ

dKs = i (K — K;) ds + 6/ K dWkE,
let us now consider three trading times {to, 1, t2} with

to =0, t; = 0.0072, t, = 1.0072, p = 1.3863,
i =0.6931, K =1, 5 = 5.2523. (25)

This example violates the conditions of Proposition 5.3l Tt is inspired by the two scenario model
of the previous subsection. E.g., {1 is close to to, and the high volatility makes illiquid scenarios
with Ky >> K likely to occur.

Using Proposition[6.dland the density function of the CIR process together with a numerical integration
scheme, we can compute U%* (to, 1, z, ko; &) from dynamic programming. For each point (kg,x), we
can calculate the costs for different trades &y from an equidistant grid {0, d¢, ..., z}. We can then infer
that the point (ko,x) belongs to the wait region if the costs for £ = 0 are smaller than the costs on
the remaining grid.

Executing this scheme for several points (kg, z) yields Figuredl As for the two scenario model, there
exist choices of kg that lead to WR-BR-WR structure. But instead of a wedge-shaped buy region, we
get a tongue-shaped upper wait region, which is located around the mean-reversion level K = 1.

7 Profitable round trip strategies

So far we have only considered one side of the limit order book. In this section, we extend our model
and include the other side of the limit order book. In such two-sided limit order books, round trip
strategies are possible and we determine under which conditions they can be profitable.

Without loss of generality we now consider the starting time 0. We model strategies that both buy
and sell the asset as a pair (0, 0), where © € 4j and © € 4, describe the number of shares which

6See Fruth (2011) for a WR-BR-WR. example for the time-inhomogeneous GBM and three trading instances.
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Figure 4: This figure shows a WR-BR-WR example for the CIR process with parameters (25]) and three
trading instances. Points (ko,z) € {0.1,0.2,...,2.1} X {0.2,0.4, ..., 8} are considered. The wait region is shaded
black.

the investor bought respectively sold starting from time 0. The position at time ¢ is given by ©; — O,
and a round trip strategy is characterised by O = éT+. Recall that, by definition of Ay, ©74 and
(:)T+ are bounded random variables. If A; and B; are the best ask and best bid prices respectively,
then the total cost of a strategy (0, ©) is given by

C(©,0):= / <At + TtA@t) dO, —/ <Bt - ?tAet) 6. (26)
[0,7] [0,

We now present two different models for two-sided limit order books. The corresponding models for
deterministic K are discussed in Fruth, Schoneborn, and Urusov (2014). First, we consider a two-sided
limit order book with bid-ask spread that depends on trading activity.

Model 7.1. (Dynamic spread model).

The best ask and best bid price processes A and B in (26) are modelled as A; := A} + D; and
B; = B} — E, where the unaffected best ask and best bid price processes A* and B" are cadlag
H!-martingales with Bf* < AY for all ¢ € [0,T], and

D, := Dye~Jo peds Koe Jiruduge ¢ e(0,T+], (27)
[O7t)

By = Ege Jorsds 4 [ Kem Lidugd, e (0, T+, (28)
[O7t)

with some given non-negative initial price impacts Dy > 0 and Ey > 0.

Proposition 7.2. (Profitable round trips in the dynamic spread model).
In the dynamic spread model round trip trading strategies cannot be profitable. That is, for all k > 0,
Do >0 and Ey > 0, for all admissible (©,0) with O1, = Or,, we have

Eo..[C(©,0)] >0

Furthermore, the expected execution costs of a buy (or sell) program that builds up a deterministic
position of say v € R shares cannot be decreased by intermediate sell (resp. buy) trades. That is, for
all kK > 0, DO > 0 and Ey > 0, for any admissible (O, @) with ©p4 — ®T+ =x > 0, there is an
admissible © with O, = x such that Eo [C(0,0)] > Ey.[C(©,0)]; also the symmetric statement
with x < 0 holds true.

21



We omit the proof since it is a direct extension of the corresponding Proposition 3.4 in Fruth,
Schéneborn, and Urusov (2014). Let us now consider an alternative model for a two-sided limit
order book in which the spread is constantly zero.

Model 7.3. (Zero spread model).

The best ask and best bid price processes in [26) are modelled as AtI = Bti =S¢+ D}, where the
unaffected price S* is a cadlag H'-martingale, and

D} = DleJirsds 4 Kee~ o rudugo, — dd,), tel0,T+] (29)
[0,1)

with some given initial price impact Dg eR.

There is a subtle difference in understanding price manipulation between the dynamic and zero spread
models. In the discussion of profitable round trip strategies in the dynamic spread model (see Propo-
sition [[2]) we considered arbitrary initial values Dy > 0 and Ey > 0 in (27) and ([28). In contrast
to this, in the discussion of profitable round trip strategies in the zero spread model (Theorem [[.4]

which follows) we will consider Dg = 0 in (29). Whenever Dg = 0 we usually have profitable round
trip strategies in the zero spread model, and this is due not to properties of the model, but rather to
the fact that both buy and sell orders are executed at the same price, such that profitable round trips

will make use of the initial deviation Dg from the unaffected price S* and of the fact that, due to the
resilience, the absolute value of this deviation decreases to zero in the absence of tradingﬁ

In order to study profitable round trip strategies in the zero spread model let us introduce the notations
ot:=0-6

for the composite strategy, which includes both buy and sell orders, and, by analogy with (&),

K
JHO) 1= JH(t,6,0% k) = JL(t, 5,08, k) :=Ey 5 U (D} + TSA%) det
[t,T]

for the cost function/§ We will sometimes write J% with the subscript 7" to emphasize the time horizon
explicitly. As in (f), the subscript in E, 5, means that we start at time ¢ with D} =0 and K; = k.
Let us consider diffusion setting (I4) for all finite time horizons T' < oo and introduce the function
n: Ry x (0,00) — R by the formula

2ps  u(s, k)  02(s,K)

O B

that is, we have n, = n(s, K;) for 1, as in Assumption ET]1).

7See Remark 8.2 in Fruth, Schéneborn, and Urusov (2014) for more detail on this point.

8The precise explanation of how this formula comes into play is similar to the explanation in Footnote [I] on page
Namely, consider a strategy (©,0) € A: x A; that acquires @%_’_ = x shares on the time interval [¢,T] (z € R is
deterministic). The total cost of this strategy is (cf. (26]))

K K ~ ~
/ (sg + D+ —Saes) de, — / (sg + DY — —SAG)S) 0.
(t,7) 2 [t,7) 2

A calculation involving integration by parts and using that S* is an H!-martingale as well as that © and © are bounded
reveals that the expected total cost equals

K. Ke -\ -
Sta +Ey g / (D} T —A@S) dOs 7/ (Dg - —A@s) dé,| .
[t.T) 2 [t,T) 2

Again, the first summand, which is trivial and moreover vanishes for round trip strategies, describes the expected cost
that occurs due to trading in the unaffected price. The second summand in the latter formula, which describes the
expected liquidity cost, is in general larger than JI(t7 5,07, k), but it is equal to Ji(t7 5,01, k) whenever O + (:)T+
equals the variation of ©% over [t,T]. It remains to notice that the latter can always be assumed without loss of
generality (and, moreover, it does not make sense economically to consider strategies (O, (:)) with ©p4 + (:)T+ being
strictly greater than the variation of ©% over [¢, T] because this means that buying and selling happen simultaneously).
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Theorem 7.4. (Profitable round trips in the zero spread model).
In the zero spread model suppose that Assumption[{.1] ) holds for all finite T < oo and

(A) the resilience is bounded away from zero (ps > p > 0) as well as, for all t > 0 and k > 0, the
function s — K, ,[K;], s € [t,00), is bounded.

We then have the following classification.:

1. If n > 0 everywhere, then all round trip strategies starting at any time t > 0 with D} =0 have
nonnegative costs.

2. Under Assumption[{1] iii), if n < 0 in some [t,t + At] X [k — €, k + €|, then there are profitable
round trip strategies starting at t with Dti =0M

Assumption (A) is satisfied for a wide range of processes K including stationary processes such as the
CIR process as well as the GBM process with non-positive drift (z < 0) whenever the resilience is
bounded away from zero.

We will see in the proof that the role of Assumption (A) is to ensure that liquidation of a random but
bounded position that the investor has at some time ¢+ At can be achieved for arbitrarily small cost if
Df + Aty = 0 and the time horizon 7' is large. The latter property seems natural to expect in reasonable
models when the resilience is bounded away from zero. In fact, one might replace Assumption (A)
with any other assumption that ensures the property stated above.

Parts ii) and iii) of Assumption 1] are required for some technical aspects of our proof. That is, the
main message of Theorem [T 4] can be somewhat loosely described as follows: if n > 0 everywhere, then
round trip strategies cannot be profitable; if n < 0 somewhereE then profitable round trip strategies
exist,.

Proof. We can extend the proof of (IF) to the zero spread model and find that the cost function J+

satisfies N
1 Dy, )? 42
JHt,5,0% k) = ZEy 5. Dr) ——+/ ns(DY)? ds (30)
2 KT K [t,T]
with 7, = n(s, Ks) as in Assumption EI] i). More precisely, instead of monotone convergence

in (I6) we need to use dominated convergence, which applies because © and © are bounded and
Et x[supsep,m K] < oo (the latter follows from Assumption [£1]ii)), and again dominated conver-
gence works in (I7) (based on Assumption £1]ii)). As for (I8), we use monotone convergence in the
first case (n > 0), while dominated convergence applies in the second case (due to Assumption [1liii)).

In particular, when we start at time ¢ with Dti = 0, we have

D$ 2
(I?r) Jr/ ns(DE)QdS],
T [t,T]

1
JH(t,0,0% k) = 5EL0.0

which establishes the statement in the first case (n > 0 everywhere).

Similarly to (80) we establish that, for any stopping time 7 with ¢ <7 < T, it holds

T2 2 K

D ,

O 2 / ns(DY)?ds | + v l / (DE+ 7‘5A®£) de}
[t,7] (T

K, K
(31)

1
J(t,5,0% k) = 5Bt

9 As pointed out above profitable round trip strategies exist also for DtI being different from zero, but the relevant

question in the zero spread model is the one for Dti =0.
10T,et us also notice that, if n(t, x) < 0 at some point (¢, ) and the functions p, 4 and o are continuous, then n < 0
in some [t,t + At] X [k — €,k + €].
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We now make use of (BI]) to construct a profitable round trip strategy in the second case. Starting at
(t, k) with Dti = 0, let us define the stopping time

Ti=(+A)ANinf{s>t|K; ¢ (k—e,k+€)}

and consider the following trading strategy. First, buy « > 0 units of the asset at time ¢. This results

ds in-

in D}Jr = Kkx. At time 7, we have D; = kae I P=ds and sell y = %= units of the asset, resulting in

Df 4+ = 0. We do nothing in (7, + At) and then liquidate the position x — y with a uniform speed
between ¢ + At and T. Notice that the position & — y is random (it depends on K), but bounded

(due to the construction of 7). Summarizing, we consider the following round trip strategy: @} =

@gzxforse (t, 7], @gzzfyforSE (1,t + At],

)

s—t—At

t_ . S5—t=Al
O =r—vt N

(y—.’L'), Se(t+AtaT]a

and @3 L= @3 = 0. An application of (3I) in this case yields

+ Et,O,n [/ Dg d@g
(t+At,T)

The first term on the right-hand side is strictly negative (we are considering the second case) and
does not depend on 7T'. Below we present a calculation showing that the second term goes to zero as
T goes to infinity, which means that, for a sufficiently large T', we constructed a round trip strategy
with strictly negative cost, i.e. with strictly positive profit.

1
J(t,0,0% k) = 5B

/ ns(D})% ds
[t,7]

Relying on Assumption (A) we finally show that

/ Dt aet
(t+At,T)

for the strategy described above. Recall that Df 4+ =0, hence DY

—0 (32)

Etﬁﬂ T— o0

= 0. That is, for s € (t+ At, T1,

t+ AL+
we have .
y— o dr
Dg = Kye  Jirrdr gy,
T—t—At Jiin:
therefore,
_ 2 T s R
Et 0,5 / D} dOt| =K. @7@2/ Kye™ Jurmd quds
(t+A8,T] (T —t = A1) Jipar Jegar
const T s e dr
S e W AR ds] -

where we used that the random variable (y — z)? is bounded. Further,

T s . T T .
]Et,n / Kue_ f“ pr dr duds| = / / e fu prdr ds ]Et,n[Ku] du
t+At Jt+At t+At \Ju
107
<= / Et o [Ky]du| < const (T —t — At).
P | Jt+at
Together with ([B3]), we obtain ([B2). This completes the proof. O
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The results of this section reveal a link between the models for two-sided limit order books: If As-
sumption I11) holds, then optimal strategies in the dynamic spread model are of WR-BR structure
and profitable round trip strategies do not exist in the zero spread model. If Assumption 1] 1) is
violated, then optimal strategies in the dynamic spread model do not need to be of WR-BR structure,
and round trip strategies in the zero spread model do not need to result in costs.

If only deterministic trading strategies are considered, then only the expected evolution of K matters

and, in the case u(s,k) is affine in &, 75 = %% 4 el 5 0 g sufficient to prevent free (or even

K
profitable) deterministic round trip strategies. Since 7, = 75 — % < 7s, we can have n; > 0
while 7, < 0. For some stochastic models for K, we therefore have only stochastic profitable round

trip strategies but no deterministic profitable round trip strategies.

8 Conclusion

We propose a limit order book model with stochastic liquidity that captures random fluctuations of
the limit order book depth. If the stochastic liquidity in this model follows a diffusion process meeting
certain conditions, then optimal trade execution follows the classical wait region / buy region structure
often observed in limit order book models with static or deterministically time dependent liquidity.
For other stochastic liquidity processes, the optimal trade execution strategy can take more general
forms; for example, multiple wait regions can occur, and optimal trade sizes do not need to depend
monotonically on the size of the position that remains to be liquidated. The conditions for the wait
region / buy region structure also result in all round trip strategies generating positive costs even if
the zero spread model is assumed.
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