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Abstra
t

In �nan
ial markets, liquidity 
hanges randomly over time. We 
onsider su
h random variations

of the depth of the order book and evaluate their in�uen
e on optimal trade exe
ution strategies.

If the sto
hasti
 stru
ture of liquidity 
hanges satis�es 
ertain 
onditions, then the unique optimal

trading strategy exhibits a 
onventional stru
ture with a single wait region and a single buy region

and pro�table round trip strategies 
annot exist. In other 
ases, optimal strategies 
an feature

multiple wait regions and optimal trade sizes that 
an be de
reasing in the size of the position to

be liquidated. Furthermore round trip strategies 
an be pro�table depending on bid-o�er spread

assumptions. We illustrate our �ndings with several examples in
luding the CIR model for the

evolution of liquidity.

KEYWORDS: Market impa
t model, optimal order exe
ution, limit order book, resilien
e, time-

varying liquidity, pro�table round trip trading strategies

1 Introdu
tion

Liquidity is not 
onstant throughout the day, but instead varies over time. Traders a
tive in a

market are typi
ally expe
ted to 
ontinuously observe these 
hanges in liquidity and adjust their

trades a

ordingly. Some part of the liquidity 
hanges is driven by deterministi
 
hanges in expe
ted

liquidity levels, e.g., daily and weekly patterns as well as expe
ted 
hanges around important points

in time su
h as news releases. These expe
ted 
hanges however do not explain liquidity variation

fully. An unpredi
ted 
omponent of liquidity 
hanges remains whi
h 
an dominate the deterministi



omponent.

We extend existing limit order book models and introdu
e a sto
hasti
 depth of the order book. In

this market, we 
onsider an investor who wants to pur
hase a large asset position. If the order book

dynami
s are driven by a general di�usion satisfying 
ertain 
onditions, then we prove existen
e and

uniqueness of the optimal trade exe
ution strategy. This trading strategy exhibits a wait region / buy

region stru
ture with a single wait region and a single buy region. If the investor �nds herself in the

wait region at a given point in time, then she does not pla
e any orders at this point; if she is in the

buy region, then the investor buys just enough to bring her position from within the buy region to

the boundary of the wait region.
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If limit order book depth is not driven by a di�usion satisfying said 
onditions, then the 
lassi
al wait

region / buy region stru
ture with one region ea
h does not need to hold. While optimal strategies

may still be des
ribed in terms of wait and buy regions, there 
an be more than one of these regions.

We provide several examples with su
h non-standard optimal trading strategies. Intuitively expe
ted

features do not need to hold any more. For example, the trade size at a given point in time 
an vary

non-monotoni
ally with the size of the remaining position: if a large or small position remains, then

no order is pla
ed, however a pur
hase order is pla
ed if the remaining position is of medium size.

To the best of our knowledge, a nonintuitive stru
ture of su
h type in solutions of Markovian 
ontrol

problems was never observed in the literature.

The 
ondition ensuring wait region / buy region stru
ture also guarantees that round trip trading

strategies 
annot be pro�table. If the 
ondition is violated, then round trip strategies 
an generate

pro�ts if the bid-o�er spread is assumed to be zero; if a dynami
 spread is assumed, then pro�ts from

round trip strategies remain unavailable.

The majority of the optimal trade exe
ution literature 
onsiders one of two di�erent market models.

First, several models assume an instantaneous temporary pri
e impa
t, e.g., Almgren and Chriss

(2001) and Almgren (2003). In these models, the temporary pri
e impa
t at time t is independent
of all orders exe
uted at time prior to t and does not in�uen
e any order at a time after t, whi
h
greatly simpli�es the analysis. Cheridito and Sepin (2014) and Almgren (2012) have studied sto
hasti


temporary pri
e impa
t in this setting and provide numeri
al methods for 
al
ulation of the optimal

strategy and value fun
tion. In a se
ond group of models, inspired by a limit order book interpretation,

resilien
e is �nite and depth and resilien
e are separately modelled. Our model falls into this se
ond

group. Due to the �nite resilien
e of the order book, the exe
ution pri
e at time t is in�uen
ed by

orders �lled at times prior to t, and the exe
ution at time t in turn in�uen
es the exe
ution pri
e of

subsequent orders. Most of the existing literature assumes the liquidity parameters to be 
onstant over

time, see, e.g., Bou
haud, Gefen, Potters, and Wyart (2004), Obizhaeva and Wang (2013), Alfonsi,

Fruth, and S
hied (2010) and Predoiu, Shaikhet, and Shreve (2011). Alfonsi and A
evedo (2014),

Bank and Fruth (2014) and Fruth, S
höneborn, and Urusov (2014) allow for deterministi
 
hanges in

liquidity and are therefore 
losely related to our paper. Let us, however, point out that this paper is

qualitatively di�erent from the aforementioned papers, and the main di�eren
es are as follows. Due to

the sto
hasti
ity in the depth of the order book, the optimal exe
ution strategies in the framework of

this paper are no longer deterministi
 (the latter was the 
ase in the aforementioned group of papers).

More surprisingly, the 
ounterexamples to the wait region / buy region stru
ture mentioned above

appear in the framework of our present paper only. To the best of our knowledge, Chen, Kou, and

Wang (2015) is the only paper 
onsidering sto
hasti
ally varying limit order book depth. They provide

a numeri
al method for 
al
ulation of the optimal strategy and value fun
tion in dis
rete time with the

depth of the limit order book driven by a dis
rete Markov 
hain. In 
ontrast, we fo
us on analyti
al

results in a 
ontinuous time setting with limit order book depth following a di�usive pro
ess.

Starting with Huberman and Stanzl (2004), pro�table round trip strategies haven been studied in a

variety of market models by Gatheral (2010), Alfonsi, S
hied, and Slynko (2012) and Klö
k, S
hied,

and Sun (2014) among others. To the best of our knowledge, all existing literature on this topi


assumes deterministi
 liquidity.

The remainder of this paper is stru
tured as follows. In Se
tion 2, we introdu
e a limit order book

model with sto
hasti
 depth and derive basi
 stru
tural features in Se
tion 3. We prove existen
e

and uniqueness of optimal strategies as well as the wait region / buy region stru
ture in Se
tion 4

as long as the sto
hasti
 dynami
s of the limit order book depth obeys 
ertain 
onditions. We apply

these results to several examples of di�usive pro
esses in Se
tion 5. If the 
onditions of Se
tion 4

are violated, then the optimal strategy does not need to be of wait region / buy region stru
ture any

more as we demonstrate in several examples in Se
tion 6. In Se
tion 7, we extend our model to two

sided limit order books and investigate the returns of round trip trading strategies. We 
on
lude in

Se
tion 8.
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2 Model des
ription

A limit order book model with time dependent depth was introdu
ed in Fruth, S
höneborn, and Urusov

(2014). In this previous paper we explain the model in depth and provide an e
onomi
 motivation.

In the following, we re
apitulate the 
entral 
omponents and notation and extend the model from

deterministi
 order book depth to sto
hasti
 order book depth.

The model is built on a �ltered probability spa
e (Ω,F , (Fs)s∈[0,T ],P). As usual in dynami
 program-

ming we 
onsider a general initial time t ∈ [0, T ] below. For the evolution of the trader's asset position

over time interval [t, T ], we 
onsider the set of admissible 
ontinuous-time in
reasing strategies

Acts
t :=

{

Θ: Ω× [t, T+] → [0,∞) |

(Fs)− adapted, in
reasing, bounded, 
àglàd with Θt = 0
}

and denote ξs := ∆Θs := Θs+ − Θs. In parti
ular, absolutely 
ontinuous trading as well as impulse

trades are allowed. A strategy from Acts
t 
onsists of a left-
ontinuous pro
ess (Θs)s∈[t,T ] and an

additional random variable ΘT+ with ∆ΘT = ΘT+ − ΘT ≥ 0 being the last trade of the strategy.

Let us emphasize that admissible strategies are bounded by de�nition, that is, for Θ ∈ Acts
t , we have

ΘT+ ≤ const < ∞ a.s. (the 
onstant depends on a strategy). Denote by

Acts
t (x) :=

{

Θ ∈ Acts
t | ΘT+ = x a.s.

}

(1)

the admissible strategies that build up a position of x ∈ [0,∞) shares until time T almost surely. For

the majority of this paper, we 
onsider only one side of the limit order book (namely, the buy side)

and hen
e only in
lude in
reasing strategies in Acts
t . As we will see in Se
tion 7, selling 
annot redu
e

overall pur
hase 
osts if the bid-o�er spread is in�uen
ed by the trader.

In addition to 
ontinuous time, we will also 
onsider trading in dis
rete time, i.e., at times

0 = t0 < t1 < ... < tN = T.

In this 
ase, we 
onstrain our admissible strategy set to

Adis
t :=

{

Θ ∈ Acts
t | Θs = 0 on [t, tñ(t)] and

Θs = Θtn+ a.s. on (tn, tn+1) for n = ñ(t), ..., N − 1
}

⊂ Acts
t

with ñ(t) := inf{n = 0, ..., N | tn ≥ t} and de�ne

Adis
t (x) :=

{

Θ ∈ Adis
t | ΘT+ = x a.s.

}

as the dis
rete analogue to Acts
t (x).

Let D be the pri
e impa
t pro
ess, i.e. the deviation of the 
urrent ask pri
e from its steady state

level, K the illiquidity pro
ess, and ρ the (time-varying) resilien
e speed.

Standing Assumption.

(i) K is a (possibly time-inhomogeneous) (Fs)-Markov pro
ess with state spa
e (0,∞) and �nite �rst

moments.

(ii) ρ : [0, T ] → (0,∞) is a stri
tly positive Lebesgue-integrable deterministi
 fun
tion.

The deviation Ds results from past trades on [t, s) in the following way

dDs = −ρsDsds+KsdΘs, Dt = δ. (2)

That is, for s ∈ [t, T ],

Ds =

∫

[t,s)

Kue
−

∫

s

u
ρrdrdΘu + δe−

∫

s

t
ρudu

(3)
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and, taking into a

ount the last trade ∆ΘT ,

DT+ =

∫

[t,T ]

Kue
−

∫

T

u
ρrdrdΘu + δe−

∫

T

t
ρudu. (4)

The pro
ess K des
ribes the externally given dynami
s of the order book depth q := 1/K, while D
represents the movement of the order book blo
k due to the trades of the large investor and the

resilien
e e�e
t.

For any �xed t ∈ [0, T ], δ ≥ 0 and κ > 0, we de�ne the 
ost fun
tion J(t, δ, ·, κ) : Acts
t → [0,∞] as1

J(Θ) := J(t, δ,Θ, κ) := Et,δ,κ

[

∫

[t,T ]

(

Ds +
Ks

2
∆Θs

)

dΘs

]

, (5)

i.e., the expe
ted liquidity 
ost on the time interval [t, T ] when Dt = δ and Kt = κ. While we do

not ex
lude the possibility of an in�nite 
ost of a strategy Θ ∈ Acts
t , it is worth noting that, for any

Θ ∈ Adis
t , the 
ost is �nite due to our standing assumption. Starting with (5) we meet the following

notational 
onvention, whi
h will be used throughout the paper: Pt,κ is the probability measure under

whi
h the Markov pro
ess K starts at time t from κ, Et,κ is the expe
tation under Pt,κ, and we write

Et,δ,κ for the expe
tation when the expression 
ontains the pro
ess D and the starting point at time t
in (2) is δ.

Let us now de�ne our value fun
tion for 
ontinuous trading time U cts : [0, T ]×[0,∞)2×(0,∞) → [0,∞)
as

U cts(t, δ, x, κ) := inf
Θ∈Acts

t (x)
J(t, δ,Θ, κ) (6)

and the value fun
tion for dis
rete trading time as

Udis(t, δ, x, κ) := inf
Θ∈Adis

t (x)
J(t, δ,Θ, κ) ≥ U cts(t, δ, x, κ). (7)

Denoting ξn := ξtn = ∆Θtn , we 
an also write the dis
rete time 
ost integral as a sum

Udis(t, δ, x, κ) = inf
Θ∈Adis

t (x)
Et,δ,κ





∑

tn≥t

(

Dtn +
Ktn

2
ξn

)

ξn



 . (8)

Both value fun
tions U = U cts
and U = Udis

ful�l the boundary 
onditions

U(T, δ, x, κ) =
(

δ +
κ

2
x
)

x and U(t, δ, 0, κ) = 0. (9)

Going forward we will use U and At(x) as a notation to indi
ate that the 
orresponding statement

holds for both the 
ontinuous and dis
rete time 
ase. If a 
ertain statement is referring to only one

setting, then we will expli
itly use U cts
and Acts

t (x) respe
tively Udis
and Adis

t (x).

1

Let us brie�y re
all how the right-hand side of (5) 
omes into play. Let the best ask pri
e pro
ess (As) be modelled

as As = Au
s +Ds, where the una�e
ted best ask pri
e (Au

s ) is a 
àdlàg H1
-martingale. Then, given that the limit order

book has the blo
k form, the total 
ost of a strategy Θ ∈ Acts
t (x) is

∫

[t,T ]

(

As + Ks

2
∆Θs

)

dΘs. A 
al
ulation involving

integration by parts reveals that the expe
ted total 
ost equals

Et,δ,κ [Au
TΘT+] + Et,δ,κ

[

∫

[t,T ]

(

Ds +
Ks

2
∆Θs

)

dΘs

]

= Au
t x+ J(t, δ,Θ, κ)

with J(t, δ,Θ, κ) given by (5) (noti
e that Et,δ,κ

∫

[t,T ]
Θs dA

u
s = 0 be
ause Au

is an H1
-martingale and Θ is bounded).

The �rst summand in the latter formula des
ribes the expe
ted 
ost that o

urs due to trading in the una�e
ted pri
e.

This 
ost depends on the strategy Θ ∈ Acts
t (x) only through the total number of shares x that the strategy a
quires,

and, due to the martingale property of Au
, the expression is trivial: the initial pri
e times the number of shares. The

se
ond summand in the latter formula des
ribes the expe
ted liquidity 
ost, whi
h o

urs due to pri
e impa
t. This


ost signi�
antly depends on the strategy and is the obje
t of our study.
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The following simple result is re
alled from Fruth, S
höneborn, and Urusov (2014). It shows that our

formulas for the pri
e impa
t and for the 
ost are e
onomi
ally sensible. This result will be essential

below.

Lemma 2.1 (Splitting argument).

Doing two separate trades ξα, ξβ > 0 at the same time s has the same e�e
t as trading at on
e

ξ := ξα + ξβ, i.e. both alternatives in
ur the same 
ost and the same pri
e deviation Ds+.

Proof. The 
ost is in both 
ases

(

Ds +
Ks

2
ξ

)

ξ = Ds(ξα + ξβ) +
Ks

2
(ξ2α + 2ξαξβ + ξ2β)

=

(

Ds +
Ks

2
ξα

)

ξα +

(

Ds +Ksξα +
Ks

2
ξβ

)

ξβ

and the pri
e deviation Ds+ = Ds +Ks(ξα + ξβ) after the trade is the same in both 
ases as well.

Finally, let us relate the setting in this paper with that in Fruth, S
höneborn, and Urusov (2014). To

this end, let the illiquidity 
oe�
ient be des
ribed by a deterministi
 stri
tly positive Borel fun
tion

k : [0, T ] → (0,∞). We introdu
e the 
ost and the value fun
tions

Jk(·)(Θ) (≡ Jk(·)(t, δ,Θ)), U cts
k(·)(t, δ, x), Udis

k(·)(t, δ, x)

similarly to (5)�(8) using the illiquidity k in pla
e of K. These are the 
orresponding 
ost and value

fun
tions in Fruth, S
höneborn, and Urusov (2014) (noti
e that in this 
ase, sin
e k is deterministi
,

the in�ma over deterministi
 and adapted strategies 
oin
ide). Again, we will use just the notation

Uk(·) to indi
ate that the 
orresponding statement holds for both the 
ontinuous and dis
rete time 
ase.

The following lemma is sometimes useful for performing 
omparisons with the 
ase of deterministi
ally


hanging illiquidity.

Lemma 2.2 (Sto
hasti
 versus deterministi
 illiquidity).

For all t ∈ [0, T ], δ ≥ 0, x ≥ 0, κ > 0, we have

U(t, δ, x, κ) ≤ UEt,κ[K(·)](t, δ, x).

Proof. U(t, δ, x, κ) is smaller than or equal to the in�mum like the one in (6) respe
tively (7), but over

deterministi
 strategies. The latter in�mum equals UEt,κ[K(·)](t, δ, x) due to (3) and (5).

3 De�nition of WR-BR stru
ture

In this se
tion we de�ne the WR-BR stru
ture (WR: wait region, BR: buy region) and derive funda-

mental properties. A detailed introdu
tion of the WR-BR stru
ture is provided by Fruth, S
höneborn,

and Urusov (2014); we therefore keep the exposition brief in this se
tion. In parti
ular, we do not

prove Proposition 3.2 below, sin
e the proof is similar to the 
orresponding proof in the aforementioned

paper.

Before atta
king the formal de�nition of WR-BR stru
ture, we note that the four-dimensional value

fun
tion U 
an be redu
ed by one dimension due to the following s
aling property (its proof is straight-

forward).

Lemma 3.1 (Optimal strategies s
ale linearly).

For all a ∈ [0,∞) we have

U(t, aδ, ax, κ) = a2U(t, δ, x, κ). (10)

Furthermore, if Θ∗ ∈ At(x) is optimal for U(t, δ, x, κ), then aΘ∗ ∈ At(ax) is optimal for U(t, aδ, ax, κ).
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We will also need two useful results:

Proposition 3.2 (Continuity of the value fun
tion).

For ea
h t ∈ [0, T ] and κ > 0, the fun
tion

U(t, ·, ·, κ) : [0,∞)2 → [0,∞)

is 
ontinuous.

Proposition 3.3 (Trading never 
ompletes early).

For all t ∈ [0, T ), δ ≥ 0, x > 0 and κ > 0, the value fun
tion satis�es

U(t, δ, x, κ) <
(

δ +
κ

2
x
)

x,

i.e. it is never optimal to buy the whole remaining position at any time t ∈ [0, T ).

Proof. The result immediately follows from Lemma 2.2 and the 
orresponding result for determinis-

ti
ally varying K, see Proposition 5.6 in Fruth, S
höneborn, and Urusov (2014).

For δ > 0, we 
an take a = 1
δ
and apply Lemma 3.1 to get

U(t, δ, x, κ) = δ2U
(

t, 1,
x

δ
, κ
)

= δ2V (t, y, κ) with (11)

y :=
x

δ
,

V (t, y, κ) := U(t, 1, y, κ), V (T, y, κ) = y +
κ

2
y2, V (t, 0, κ) ≡ 0.

Going forward we will use V cts
and V dis

where we need to di�erentiate between 
ontinuous and dis
rete

time settings. We now see that the fun
tion U(t, δfix, x, κ) for some δfix > 0 or U(t, δ, xfix, κ) for
some xfix > 0 already determines the entire value fun
tion. In the following we will often analyze

the fun
tion V in order to derive the properties of U . Te
hni
ally this does not dire
tly allow us to

draw 
on
lusions for U(t, 0, x, κ), sin
e, for δ = 0, the ratio y = x/δ is not de�ned. The extension

of our proofs to allow the possibility δ = 0 is however straightforward by a 
ontinuity argument (see

Proposition 3.2).

We �rst de�ne the buy and wait region and subsequently de�ne the barrier fun
tion.

De�nition 3.4 (Buy and wait region).

For any t ∈ [0, T ] and κ > 0, we de�ne the inner buy region as

Brt,κ :=
{

y ∈ (0,∞) | ∃ξ ∈ (0, y) : U(t, 1, y, κ) = U (t, 1 + κξ, y − ξ, κ) +
(

1 +
κ

2
ξ
)

ξ
}

,

and 
all the following sets the buy region and wait region at time t for the illiquidity 
oe�
ient κ:

BRt,κ := Brt,κ, WRt,κ := [0,∞) \Brt,κ

(the bar indi
ates 
losure in R).

The inner buy region at time t for illiquidity 
oe�
ient κ hen
e 
onsists of all values y su
h that

immediate buying at the state (1, y) is value preserving. The wait region on the other hand 
ontains

all values y su
h that any non-zero pur
hase at (1, y) destroys value. Let us note that BrT,κ = (0,∞),
BRT,κ = [0,∞) and WRT,κ = {0}. The wait region / buy region 
onje
ture 
an now be formalized

as follows.
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De�nition 3.5 (WR-BR stru
ture).

The value fun
tion U has WR-BR stru
ture if there exists a barrier fun
tion

c : [0, T ]× (0,∞) → [0,∞]

su
h that for all t ∈ [0, T ] and κ > 0,

Brt,κ = (c(t, κ),∞)

with the 
onvention (∞,∞) := ∅. For the value fun
tion Udis
in dis
rete time to have WR-BR

stru
ture, we only 
onsider t ∈ {t0, ..., tN} and set cdis(t, κ) = ∞ for t /∈ {t0, ..., tN}.

It is worth noting that the barrier 
an be in�nite even in 
ontinuous time or in dis
rete time at time

points t0, . . . , tN−1, that is, there 
an be 
ertain t and κ, for whi
h it is never optimal to perform a

blo
k trade, regardless of how large the remaining position is. We refer to Propositions 5.8 and 5.9

in Fruth, S
höneborn, and Urusov (2014) for su�
ient 
onditions for in�nite barrier in the 
ase of

deterministi
ally varying K.

Let us remark that we always have c(T, κ) = 0. On the 
ontrary, the barrier is always stri
tly positive

for t ∈ [0, T ) (whenever the value fun
tion U has WR-BR stru
ture):

Proposition 3.6 (Wait region near zero).

Assume that the value fun
tion U has WR-BR stru
ture with the barrier c. Then, for any t ∈ [0, T )
and κ > 0, we have c(t, κ) ∈ (0,∞].

Proof. Assume that for some t ∈ [0, T ) and κ > 0 we have c(t, κ) = 0. Let us �x some y > 0 and

de�ne

ξ̄ := sup
{

ξ ∈ (0, y) | U(t, 1, y, κ) = U(t, 1 + κξ, y − ξ, κ) +
(

1 +
κ

2
ξ
)

ξ
}

≤ y.

Sin
e U(t, ·, ·, κ) is 
ontinuous (Proposition 3.2), we get

U(t, 1, y, κ) = U(t, 1 + κξ̄, y − ξ̄, κ) +
(

1 +
κ

2
ξ̄
)

ξ̄. (12)

If ξ̄ < y, then, due to the s
aling property of Lemma 3.1, the fa
t that (y − ξ̄)/(1 + κξ̄) ∈ Brt,κ,
and the splitting argument of Lemma 2.1, we arrive at a 
ontradi
tion with the de�nition of ξ̄. Thus,
ξ̄ = y, but then formula (12) 
ontradi
ts Proposition 3.3. This 
ompletes the proof.

The following proposition 
hara
terizes the WR-BR stru
ture and will be needed for some of our main

results.

Proposition 3.7. (WR-BR stru
ture is equivalent to trading towards the barrier).

Assume that for ea
h (t, δ, x, κ) there exists a unique optimal strategy

(Θ∗
s(t, δ, x, κ))s∈[t,T ] ∈ At(x).

Then the following statements are equivalent.

(a) The value fun
tion has WR-BR stru
ture.

(b) There exists c : [0, T )× (0,∞) → (0,∞] su
h that for all (t, δ, x, κ)

∆Θ∗
t (t, δ, x, κ) = max

{

0,
x− c(t, κ)δ

1 + κc(t, κ)

}

. (13)

In parti
ular, ∆Θ∗
t (t, δ, x, κ) is 
ontinuous in δ and x.

(
) For all (t, δ, κ), the fun
tion x 7→ ∆Θ∗
t (t, δ, x, κ) is in
reasing.
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Proof. First we prove the equivalen
e of (a) and (b). Statement (
) follows immediately from (b). We


on
lude by showing that (
) implies (b). The s
aling property (Lemma 3.1) yields

∆Θ∗
t (t, δ, x, κ) = δ∆Θ∗

t

(

t, 1,
x

δ
, κ
)

.

Therefore we only need to dis
uss the 
ase δ = 1. Fix arbitrary t ∈ [0, T ], κ ∈ (0,∞).

(a) ⇒ (b) The assertion holds for x = 0. Assume x ∈ (0, c(t, κ)]. Then the WR-BR stru
ture implies

that for all ξ ∈ (0, x)

U(t, 1, x, κ) < U (t, 1 + κξ, x− ξ, κ) +
(

1 +
κ

2
ξ
)

ξ.

Therefore it 
annot be optimal to trade immediately at time t.

Assume c(t, κ) < ∞ and x ∈ (c(t, κ),∞). Then the WR-BR stru
ture implies that there

exists ξ̃ ∈ (0, x) su
h that

U(t, 1, x, κ) = U
(

t, 1 + κξ̃, x− ξ̃, κ
)

+
(

1 +
κ

2
ξ̃
)

ξ̃.

Due to the uniqueness of the optimal strategy, we get

∆Θ∗
t (t, 1, x, κ) = ξ̃ +∆Θ∗

t

(

t, 1 + κξ̃, x− ξ̃, κ
)

> 0.

For ξ̃ < x−c(t,κ)
1+κc(t,κ) , we have

x−ξ̃

1+κξ̃
> c(t, κ) and thus

∆Θ∗
t

(

t, 1 + κξ̃, x− ξ̃, κ
)

> 0.

Consequently, ∆Θ∗
t (t, 1, x, κ) ≥ x−c(t,κ)

1+κc(t,κ) . Two trades exe
uted immediately after ea
h other

have the same e�e
t as one trade of their 
ombined size (see Lemma 2.1). Due to this splitting

argument, we have

∆Θ∗
t (t, 1, x, κ) =

x− c(t, κ)

1 + κc(t, κ)
+ ∆Θ∗

t

(

t, 1 + κ
x− c(t, κ)

1 + κc(t, κ)
, x−

x− c(t, κ)

1 + κc(t, κ)
, κ

)

.

Observe that the se
ond summand equals zero be
ause

x− x−c(t,κ)
1+κc(t,κ)

1 + κ x−c(t,κ)
1+κc(t,κ)

= c(t, κ).

(b) ⇒ (a) Assume x ∈ (0, c(t, κ)]. Then (13) implies ∆Θ∗
t (t, 1, x, κ) = 0. Together with the unique-

ness of the optimal strategy we 
an therefore 
on
lude that x /∈ Brt,κ, sin
e for all ξ ∈ (0, x)

U(t, 1, x, κ) < U (t, 1 + κξ, x− ξ, κ) +
(

1 +
κ

2
ξ
)

ξ.

Assume c(t, κ) < ∞ and x ∈ (c(t, κ),∞). Then (13) implies

∆Θ∗
t (t, 1, x, κ) ∈ (0, x).

The optimality of Θ∗
leads to the 
on
lusion x ∈ Brt,κ sin
e

U(t, 1, x, κ) = U (t, 1 + κ∆Θ∗
t (t, 1, x, κ), x−∆Θ∗

t (t, 1, x, κ), κ)

+
(

1 +
κ

2
∆Θ∗

t (t, 1, x, κ)
)

∆Θ∗
t (t, 1, x, κ).

8



(
) ⇒ (b) De�ne

c(t, κ) := inf {x ∈ (0,∞)|∆Θ∗
t (t, 1, x, κ) > 0} .

We are done for c(t, κ) = ∞. Let c(t, κ) < ∞. Then the de�nition of c(t, κ) guarantees

∆Θ∗
t (t, 1, x, κ) = 0 for all x < c(t, κ), and Property (
) implies ∆Θ∗

t (t, 1, x, κ) > 0 for all

x > c(t, κ). Suppose for a 
ontradi
tion that

∆Θ∗
t (t, 1, c(t, κ), κ) > 0.

Due to the uniqueness and the splitting argument, we then have, for ǫ ∈ (0,∆Θ∗
t (t, 1, c(t, κ), κ)),

∆Θ∗
t (t, 1, c(t, κ), κ) = ǫ+∆Θ∗

t (t, 1 + κǫ, c(t, κ)− ǫ, κ) = ǫ < ∆Θ∗
t (t, 1, c(t, κ), κ) .

Therefore, ∆Θ∗
t (t, 1, x, κ) = 0 for all x ≤ c(t, κ).

We still need to prove ∆Θ∗
t (t, 1, x, κ) = x−c(t,κ)

1+κc(t,κ) for x > c(t, κ). Let us �rst assume that

∆Θ∗
t (t, 1, x, κ) >

x−c(t,κ)
1+κc(t,κ) . On
e more, we make use of the uniqueness and the splitting argument

in order to get a 
ontradi
tion

∆Θ∗
t (t, 1, x, κ) =

x− c(t, κ)

1 + κc(t, κ)
+ ∆Θ∗

t

(

t, 1 + κ
x− c(t, κ)

1 + κc(t, κ)
, x−

x− c(t, κ)

1 + κc(t, κ)
, κ

)

=
x− c(t, κ)

1 + κc(t, κ)
< ∆Θ∗

t (t, 1, x, κ).

Finally, assume ∆Θ∗
t (t, 1, x, κ) <

x−c(t,κ)
1+κc(t,κ) . That is,

x−∆Θ∗
t (t,1,x,κ)

1+κ∆Θ∗
t (t,1,x,κ)

> c(t, κ) and we again arrive

at a 
ontradi
tion:

∆Θ∗
t (t, 1, x, κ) = ∆Θ∗

t (t, 1, x, κ) + ∆Θ∗
t

(

t, 1 + κ∆Θ∗
t (t, 1, x, κ), x−∆Θ∗

t (t, 1, x, κ), κ
)

> ∆Θ∗
t (t, 1, x, κ).

4 The WR-BR theorem

In this se
tion we show that the value fun
tion exhibits WR-BR stru
ture if K is a di�usion satisfying

the following assumption.

Assumption 4.1. (Spe
ial di�usion).

K is a (possibly time-inhomogeneous) di�usion

dKs = µ(s,Ks) ds+ σ(s,Ks) dW
K
s , Kt = κ > 0, (14)

for an (Fs)-Brownian motionWK
and µ, σ : [0, T ]×(0,∞) → R su
h that, for any initial time t ∈ [0, T ]

and starting point Kt = κ > 0, the sto
hasti
 di�erential equation has a weak solution whi
h is unique

in law, is stri
tly positive and has �nite �rst moments. Furthermore, for all t ∈ [0, T ] and κ > 0, we
have

i) ηs :=
2ρs

Ks
+ µ(s,Ks)

K2
s

− σ2(s,Ks)
K3

s
> 0 Pt,κ×µL-a.e. on Ω× [t, T ] (µL denotes the Lebesgue measure),

ii) Et,κ

[

sups∈[t,T ] K
2
s

infs∈[t,T ] Ks

]

< ∞,

iii) Et,κ

[(

∫ T

0
|ηs| ds

)(

sups∈[t,T ] K
2
s

)]

< ∞.
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In Se
tion 7 below we study pro�table round trip strategies without assuming that the pro
ess η is

positive, but we will need part iii) of Assumption 4.1. That is why we write absolute value of η in iii).

Theorem 4.2. (WR-BR theorem).

If Assumption 4.1 holds, then there is a unique optimal strategy, and we have WR-BR stru
ture.

In fa
t, we will see in the proof that existen
e and uniqueness of the optimal strategy both in dis-


rete and 
ontinuous time as well as WR-BR stru
ture in dis
rete time hold under parts i)�ii) of

Assumption 4.1. We need part iii) only for WR-BR stru
ture in 
ontinuous time.

We prove Theorem 4.2 in two steps. In Subse
tion 4.1, we show that Assumption 4.1 ensures stri
t


onvexity of the 
ost fun
tional J in the strategy, whi
h in turn guarantees existen
e and uniqueness

of the optimal strategy. As we show in Subse
tion 4.2, the uniqueness ex
ludes WR-BR-WR and

other situations: at any upper boundary of a buy region it must be equally optimal to wait as it is to

exe
ute the stri
tly positive trade to the lower boundary of the buy region. We �rst pursue this line

of argument for the dis
rete time 
ase and then transfer it to 
ontinuous time and thus do not use the

Hamilton-Ja
obi-Bellman equation.

Part i) of Assumption 4.1 is the most 
riti
al in the proof sin
e it is dire
tly linked to the 
onvexity

of J . As we will see in Se
tion 7, it is also related to the absen
e of pro�table round trip trading

strategies in a two-sided order book model. Parts ii) and iii) of Assumption 4.1 are required for more

te
hni
al aspe
ts of our proof.

Theorem 4.2 does not 
over all models whi
h result in a WR-BR stru
ture.

2

In Se
tion 6 we provide

examples violating the WR-BR stru
ture, highlighting that some assumptions on K are ne
essary to

guarantee a WR-BR stru
ture.

4.1 Existen
e of a unique optimal strategy

Under Assumption 4.1, we show in Lemma 4.3 that J(Θ) is stri
tly 
onvex. This guarantees the

uniqueness of an optimal strategy provided it exists. We 
an then use the 
onvexity together with the

Komlós theorem to �nally get the existen
e of an optimal strategy in Proposition 4.4.

Lemma 4.3. (Costs are 
onvex in the strategy).

Let Assumption 4.1 hold. Then, for all t ∈ [0, T ], δ ≥ 0 and κ > 0, the fun
tion J(·) ≡ J(t, δ, ·, κ) is
�nite and stri
tly 
onvex on At.

Proof. Let t, δ and κ be �xed. Clearly, Assumption 4.1 ii) implies Et,κ sups∈[t,T ] Ks < ∞, hen
e J(·)
is �nite on the whole At. We demonstrate below that

J(Θ) =
1

2
Et,δ,κ

[

D2
T+

KT

−
δ2

κ
+

∫

[t,T ]

ηsD
2
sds

]

(15)

with (ηs) as in Assumption 4.1 i). The right-hand side is stri
tly 
onvex in the pro
ess (Ds)s∈[t,T ].

Thus, for two di�erent strategiesΘ′,Θ′′ ∈ At with 
orrespondingD
′, D′′

both starting inD′
t = D′′

t = δ,
we have D(νΘ′ + (1− ν)Θ′′) = νD′ + (1− ν)D′′

, hen
e J(νΘ′ + (1− ν)Θ′′) < νJ(Θ′) + (1− ν)J(Θ′′)
for all ν ∈ (0, 1) as desired. Hen
e, we only need to show (15).

De�ne the lo
al martingaleMs :=
∫

[t,s∧T ]
D2

uσ(u,Ku)
2K2

u
dWK

u for s ∈ [t,∞). That is, τn = {s ≥ t | 〈M〉s ≥

n} is an in
reasing sequen
e of stopping times su
h that τn ր ∞ a.s. and M τn
is a martingale for

2

Restri
ting trading to only two points in time is an example whi
h always has WR-BR stru
ture irrespe
tive of

Assumption 4.1. Furthermore, in the 
ase of deterministi
ally varying K we always have WR-BR stru
ture in dis
rete

time and, for 
ontinuous K, in 
ontinuous time, see Fruth, S
höneborn, and Urusov (2014).
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every n. In parti
ular, Et,δ,κ[MT∧τn ] = 0. Due to the monotone 
onvergen
e theorem and τn ≥ T a.s.

for large n,

J(Θ) = lim
n→∞

Et,δ,κ

[

∫

[t,T∧τn]

(

Ds +
Ks

2
∆Θs

)

dΘs

]

. (16)

Using dΘs =
dDs+ρsDsds

Ks
and ∆Θs =

∆Ds

Ks
, we get

J(Θ) = lim
n→∞

Et,δ,κ

[

∫

[t,T∧τn]

Ds +
1
2∆Ds

Ks

dDs +

∫

[t,T∧τn]

ρsD
2
s

Ks

ds+

∫

[t,T∧τn]

1
2∆DsρsDs

Ks

ds

]

.

The last integral is zero, sin
e D has at most 
ountably many jumps. With integration by parts for


àglàd pro
esses,

∫

[t,T∧τn]

Ds

Ks

dDs =
D2

(T∧τn)+

K(T∧τn)
−

δ2

κ
−

∫

[t,T∧τn]

Dsd

(

D

K

)

s

−
∑

s∈[t,T∧τn]

(∆Ds)
2

Ks

.

Use d
(

D
K

)

s
= 1

Ks
dDs +Dsd

(

1
Ks

)

and rearrange terms to get

∫

[t,T∧τn]

Ds

Ks

dDs =
1

2





D2
(T∧τn)+

K(T∧τn)
−

δ2

κ
−

∫

[t,T∧τn]

D2
sd

(

1

Ks

)

−
∑

s∈[t,T∧τn]

(∆Ds)
2

Ks



 .

Applying It�'s formula

d

(

1

Ks

)

=

(

σ2(s,Ks)

K3
s

−
µ(s,Ks)

K2
s

)

ds−
σ(s,Ks)

K2
s

dWK
s

yields

∫

[t,T∧τn]

(

Ds +
Ks

2
∆Θs

)

dΘs =
1

2

[

D2
(T∧τn)+

KT∧τn

−
δ2

κ
+

∫

[t,T∧τn]

ηsD
2
sds+MT∧τn

]

.

The assertion follows, sin
e Lebesgue's dominated 
onvergen
e theorem together with Assumption 4.1 ii)

guarantee

Et,δ,κ

[

D2
(T∧τn)+

KT∧τn

]

−−−−→
n→∞

Et,δ,κ

[

D2
T+

KT

]

, (17)

while, by the monotone 
onvergen
e theorem, we have

Et,δ,κ

[

∫

[t,T∧τn]

ηsD
2
sds

]

−−−−→
n→∞

Et,δ,κ

[

∫

[t,T ]

ηsD
2
sds

]

. (18)

Proposition 4.4. (Existen
e and uniqueness of an optimal strategy).

Let Assumption 4.1 hold. Then, for all t ∈ [0, T ], δ ≥ 0, x ≥ 0 and κ > 0, there exists a unique

optimal strategy, i.e. there exists a unique Θ∗ = Θ∗(t, δ, x, κ) ∈ At(x) with

J (t, δ,Θ∗, κ) = inf
Θ∈At(x)

J (t, δ,Θ, κ) .

Proof. Thanks to Lemma 4.3, we only need to prove existen
e. Let t, δ and κ be �xed. We start by

showing that there exists a sequen
e of strategies

(

Θ
n
)

⊂ At(x) that 
onverges in some sense to a

11



strategy Θ∗ ∈ At(x) and minimizes the 
ost J , i.e. limn→∞ J
(

Θ
n
)

= infΘ∈At(x) J(Θ). We 
on
lude

by dedu
ing that limn→∞ J(Θ
n
) = J(Θ∗).

Let

(

Θj
)

⊂ At(x) be a minimizing sequen
e for J . Due to the Komlós theorem in the form of

Lemma 3.5 from Kabanov (1999), there exists a Cesaro 
onvergent subsequen
e (Θjm). That is,

Θ
n
:=

1

n

n
∑

m=1

Θjm


onverges to some strategy Θ∗ ∈ At in the following sense. For Pt,κ-almost every ω, the measures

Θ
n
(ω) on [t, T ] 
onverge weakly to the measure Θ∗(ω). In what follows we 
all su
h a 
onvergen
e

pathwise weak 
onvergen
e in time. Equivalently, for almost every ω, we have limn→∞ Θ
n

s = Θ∗
s

whenever s ∈ [t, T ] with ∆Θ∗
s = 0. We set Θ∗

T+ = x rede�ning Θ∗
T+ if ne
essary. Noti
e that this does

not disturb the weak 
onvergen
e. Thus, Θ∗ ∈ At(x). Moreover,

(

Θ
n
)

⊂ At(x) is again a minimizing

sequen
e for J , sin
e J is 
onvex.

It remains to show that Θ∗
attains the in�mum. Applying (15) yields

J
(

Θ
n
)

=
1

2
Et,δ,κ

[

(

Dn
T+

)2

KT

−
δ2

κ
+

∫

[t,T ]

ηs (D
n
s )

2 ds

]

, (19)

J (Θ∗) =
1

2
Et,δ,κ

[

(

D∗
T+

)2

KT

−
δ2

κ
+

∫

[t,T ]

ηs (D
∗
s)

2
ds

]

, (20)

where Dn
and D∗

are the pri
e impa
t pro
esses that 
orrespond to Θ
n
and Θ∗

. By the (pathwise

weak in time) 
onvergen
e of Θ
n
to Θ∗

, for almost every ω, we get limn→∞ Dn
s = D∗

s for every point

s ∈ [t, T ], where Θ∗
is 
ontinuous, as well as for s = T+.3 Fatou's lemma and (19)�(20) now imply

J (Θ∗) ≤ lim infn→∞ J
(

Θ
n
)

, whi
h means that Θ∗
is an optimal strategy.

4.2 Wait and buy region stru
ture

Under Assumption 4.1, we will now exploit the uniqueness of the optimal strategy to prove WR-BR

stru
ture. Proposition 4.5 treats the dis
rete time 
ase, whi
h is then transferred to 
ontinuous time

in Proposition 4.8.

Proposition 4.5. (Dis
rete time: WR-BR stru
ture).

Let Assumption 4.1 hold. Then the value fun
tion Udis
has WR-BR stru
ture.

Proof. A

ording to Propositions 3.7 and 4.4, we only need to show that the optimal initial trade

∆Θ∗
tn
(tn, δ, x, κ) is in
reasing in x, where Θ∗

denotes the 
orresponding optimal strategy. Due to the

s
aling property of the value fun
tion (Lemma 3.1),

∆Θ∗
tn
(tn, δ, x, κ) = δ∆Θ∗

tn

(

tn, 1,
x

δ
, κ
)

.

Due to the splitting argument (Lemma 2.1) and the uniqueness of the optimal strategy,∆Θ∗
tn
(tn, 1, ·, κ)

must be in
reasing and 
ontinuous apart from a possible dis
ontinuity in the form of a jump ba
k to

zero. That is there might exist y > 0 with ∆Θ∗
tn

(tn, 1, y−, κ) > 0 and ∆Θ∗
tn

(tn, 1, y+, κ) = 0. In the

following, we ex
lude su
h dis
ontinuities using a Komlós argument as in the proof of Proposition 4.4.

Suppose for a 
ontradi
tion that su
h a dis
ontinuity exists in y > 0. Let us take some monotone

sequen
es y1,j ր y and y2,j ց y and de�ne Θi,j := Θ∗(tn, 1, y
i,j, κ) for i ∈ {1, 2}. Let us 
hoose ǫ > 0

3

See also Lemma 7.3 of Fruth, S
höneborn, and Urusov (2014).
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su
h that ∆Θ1,j
tn

≥ ǫ > 0 for all su�
iently large j. Without loss of generality we assume that the

latter inequality holds for all j. Sin
e V dis
is 
ontinuous in y (see Proposition 3.2),

J
(

tn, 1,Θ
1,j, κ

)

= V dis
(

tn, y
1,j , κ

)

−−−→
j→∞

V dis (tn, y, κ) .

De�ne bj :=
y

y1,j ց 1. Then we have

0 ≤ J
(

tn, 1, bjΘ
1,j, κ

)

− J
(

tn, 1,Θ
1,j, κ

)

≤ J
(

tn, bj, bjΘ
1,j, κ

)

− J
(

tn, 1,Θ
1,j, κ

)

= (b2j − 1)J
(

tn, 1,Θ
1,j, κ

)

−−−→
j→∞

0.

Therefore,

(

bjΘ
1,j
)

is a minimizing sequen
e of strategies that build up the position of y shares,

i.e., bjΘ
1,j ∈ Adis

tn
(y) and

lim
j→∞

J
(

tn, 1, bjΘ
1,j , κ

)

= V dis (tn, y, κ) .

As in the proof of Proposition 4.4, we 
an de�ne Θ ∈ Adis
tn

(y) as the pathwise weak in time limit of

the averaged sum over a subsequen
e of

(

bjΘ
1,j
)

su
h that J(tn, 1,Θ, κ) = V dis(tn, y, κ), i.e. Θ is an

optimal strategy. Due to the 
onstru
tion of Θ, with ǫ > 0 from above, we have

∆Θtn (tn, 1, y, κ) ≥ ǫ > 0.

Similarly, one 
onstru
ts an optimal strategy Θ ∈ Adis
tn

(y) using the sequen
e

(

y
y2,j Θ

2,j
)

of strategies

with zero initial trade. Sin
e we now treat the dis
rete time 
ase, the initial trade remains zero also

in the weak limit:

∆Θtn (tn, 1, y, κ) = 0.

Thus, Θ and Θ are di�erent. This 
ontradi
ts the uniqueness of the optimal strategy.

The line of argument used in the pre
eding proof does not extend dire
tly to 
ontinuous time. Let

us also noti
e that we did not yet use part iii) of Assumption 4.1. We now transfer the dis
rete time

result of Proposition 4.5 to 
ontinuous time in Proposition 4.8 using the approximation te
hniques of

Lemmas 4.6 and 4.7, and we will now need part iii) of Assumption 4.1.

Lemma 4.6. (Approximation via step fun
tions).

Let Assumption 4.1 hold. For Θ ∈ Acts
t (x), let ΘN ∈ Adis

t (x) be its approximation from below by an

equidistant grid step fun
tion. More pre
isely, de�ne T 0
t := {t, T },

T N+1
t := T N

t ∪

{(

s+
T − t

2N+1

)

∧ T | s ∈ T N
t

}

and

ΘN
s :=







0 if s = t
Θu+ if s ∈

(

u, u+ T−t
2N

]

, u ∈ T N
t

x if s = T+







.

Then J (t, 1,Θ, κ) = limN→∞ J
(

t, 1,ΘN , κ
)

.

Proof. We pro
eed as at the end of the proof of Proposition 4.4. That is we only need to show

that ΘN

onverges pathwise weakly in time to Θ. Due to T N

t ⊂ T N+1
t , ΘN

is in
reasing in N . For

all s ∈ [t, T+], the sequen
e
(

ΘN
s

)

N∈N
is bounded above by Θs. Hen
e, it is 
onvergent. Due to the

de�nition of ΘN
, we must even have limN→∞ ΘN

s = Θs for all s ∈ [t, T ] with ∆Θs = 0. Now the result

follows from (15) and the dominated 
onvergen
e theorem (apply Assumption 4.1 ii) and iii)).
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Lemma 4.7. (Cesaro weak 
onvergen
e).

Fix t ∈ [0, T ], κ ∈ (0,∞) and for various x ∈ [0,∞) 
onsider

(

ΘN (t, 1, x, κ)
)

N∈N
⊂ Acts

t (x).

Then there exists a subsequen
e Nj(t, κ), whi
h does not depend on x, and a set of strategies Θ̃(t, 1, ·, κ)
su
h that for all x ∈ [0,∞) ∩Q

1

m

m
∑

j=1

ΘNj (t, 1, x, κ)
w

−−−−→
m→∞

Θ̃ (t, 1, x, κ) . (21)

In (21) the notation �

w
−→� stands for the pathwise weak 
onvergen
e in time (
f. the proof of Propo-

sition 4.4).

Proof. Sin
e Q is 
ountable, we 
an write [0,∞) ∩ Q = {x1, x2, ...}. For ea
h x ∈ [0,∞), the Komlós

theorem guarantees the existen
e of a subsequen
e Nj (t, x, κ) su
h that the desired pathwise weak


onvergen
e in time holds. That is we get (N
(1)
j )j∈N ⊂ N for x1 and extra
t the subsequen
eN

(2)
j for x2

from N
(1)
j , et
. We remark that the Komlós theorem gives not only Cesaro 
onvergent subsequen
es,

but subsequen
es su
h that all their subsequen
es are Cesaro 
onvergent to the same limit. The

Cantor diagonal sequen
e Nj := N
(j)
j then guarantees the Cesaro weak 
onvergen
e of ΘNj (t, 1, x, κ)

for all x ∈ [0,∞) ∩Q.

Proposition 4.8. (Continuous time: WR-BR stru
ture).

Let Assumption 4.1 hold. Then the value fun
tion U cts
has WR-BR stru
ture.

Proof. As in the proof of Proposition 4.5, we only need to ex
lude the jump ba
k to zero of x 7→
∆Θ∗

t (t, 1, x, κ). Let Θ
N ∈ Adis

t (x) be the approximation of Θ∗ ∈ Acts
t (x) by step fun
tions from below

as in Lemma 4.6. Then

J (t, 1,Θ∗, κ) = lim
N→∞

J
(

t, 1,ΘN , κ
)

.

Let Θ∗N
be the unique optimal strategy within Adis

t (x) for the time grid T N
t , i.e.

J
(

t, 1,ΘN , κ
)

≥ J
(

t, 1,Θ∗N , κ
)

≥ J (t, 1,Θ∗, κ) .

Hen
e,

J (t, 1,Θ∗, κ) = lim
N→∞

J
(

t, 1,Θ∗N , κ
)

.

That is, for ea
h x ∈ [0,∞), (Θ∗N (t, 1, x, κ))N∈N is a minimizing sequen
e, and for ea
h N ∈ N, x 7→
∆Θ∗N

t (t, 1, x, κ) is in
reasing thanks to Proposition 4.5.

Apply Lemma 4.7 to Θ∗N(t, 1, x, κ) (for all rational x). The resulting strategy Θ̃(t, 1, x, κ) as in (21)

is optimal (apply 
onvexity of the 
ost fun
tion together with (15) and the dominated 
onvergen
e

theorem). Sin
e the optimal strategy is unique, Θ̃(t, 1, x, κ) must 
oin
ide with Θ∗(t, 1, x, κ) for all
x ∈ [0,∞) ∩ Q. Furthermore, sin
e we already proved WR-BR stru
ture in dis
rete time, for all N
and s ∈ [t, T ], the fun
tion x 7→ Θ∗N

s (t, 1, x, κ) is in
reasing. Due to the pathwise weak 
onvergen
e

as in (21), for all s ∈ [t, T ], the fun
tion x 7→ Θ∗
s(t, 1, x, κ) is in
reasing over rational x. In parti
ular,

x 7→ ∆Θ∗
t (t, 1, x, κ) ≡ Θ∗

t+(t, 1, x, κ) is in
reasing over rational x. Sin
e we only need to ex
lude the

downward jump, it su�
es to have this monotoni
ity over the rational numbers.
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5 Example models with WR-BR stru
ture

By Theorem 4.2, any model satisfying Assumption 4.1 has WR-BR stru
ture. In this se
tion, we show

that Assumption 4.1 is satis�ed by several standard pro
esses. We start with deterministi
 K.

Proposition 5.1. (Deterministi
 
ase).

Assume that K : [0, T ] → (0,∞) is deterministi
 and two times 
ontinuously di�erentiable, ρ : [0, T ] →
(0,∞) is 
ontinuously di�erentiable with K ′

t+2ρtKt > 0 for all t ∈ [0, T ]. Then Assumption 4.1 holds,

and the value fun
tion has WR-BR stru
ture.

Proof. Condition i) is equivalent to K ′
t + 2ρtKt > 0, and ii), iii) are 
learly satis�ed for deterministi



ontinuous K.

Let us now turn to a time-homogeneous geometri
 Brownian motion (GBM). Noti
e that, due to the

homogeneity in time, it is enough to verify the 
onditions in Assumption 4.1 only under measures P0,κ.

Proposition 5.2. (GBM 
ase).

Let K be a geometri
 Brownian motion

dKt = µ̄Kt dt+ σ̄Kt dW
K
t , K0 = κ > 0.

Consider a 
onstant resilien
e ρt ≡ ρ̄ > 0 su
h that 2ρ̄+ µ̄− σ̄2 > 0. Then Assumption 4.1 holds, and

the value fun
tion has WR-BR stru
ture.

Proof. i) We have ηt =
1
Kt

(

2ρ̄+ µ̄− σ̄2
)

> 0.

ii) Set qt :=
1
Kt

. Thanks to Hölder's inequality,

E0,κ







(

supt∈[0,T ]Kt

)2

inft∈[0,T ]Kt






≤ E0,κ

[

sup
t∈[0,T ]

K4
t

]
1
2

E0,κ

[

sup
t∈[0,T ]

q2t

]
1
2

. (22)

The expli
it formula for GBM, Kt = K0e
σ̄WK

t +
(

µ̄− σ̄2

2

)

t
, yields

E0,κ

[

sup
t∈[0,T ]

K4
t

]

≤ κ4 max

{

1, e
4
(

µ̄− σ̄2

2

)

T

}

E0,κ

[

exp

(

4σ̄ sup
t∈[0,T ]

WK
t

)]

.

The latter expression is �nite due to the fa
t that (supt∈[0,T ]W
K
t ) has the same distribution as |WK

T |,
whi
h is a 
onsequen
e of the re�e
tion prin
iple for a Brownian motion. The se
ond expe
tation

in (22) is �nite, sin
e qt =
1
Kt

is also a GBM (with drift (σ̄2 − µ̄) and volatility σ̄).

iii) Due to the form of ηt, it is enough to 
onsider

E0,κ





∫ T

0

(

sup
t∈[0,T ]

Kt

)2
1

Kt

dt



 ≤ T E0,κ







(

supt∈[0,T ]Kt

)2

inft∈[0,T ] Kt






,

where the right-hand side is �nite a

ording to ii).

See Fruth (2011) for alternative 
onditions ensuring WR-BR stru
ture in the GBM 
ase. We 
on
lude

this se
tion with the Cox-Ingersoll-Ross (CIR) pro
ess. This pro
ess is parti
ularly appealing from

the e
onomi
 point of view due to its mean reversion.

4

4

See Fruth (2011), Se
tion 3.3, for numeri
al illustrations of WR-BR barriers, optimal trading strategies and 
ost

distribution fun
tions for K being a CIR pro
ess.
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Proposition 5.3. (CIR 
ase).

Let K be a Cox-Ingersoll-Ross pro
ess

dKt = µ̄(K̄ −Kt) dt+ σ̄
√

Kt dW
K
t , K0 = κ > 0,

where K̄, µ̄, σ̄ > 0. Consider a 
onstant resilien
e ρt ≡ ρ̄ > 0 su
h that

2ρ̄ ≥ µ̄ > 2σ̄2/K̄.

Then Assumption 4.1 holds, and the value fun
tion has WR-BR stru
ture.

Proof. Su
h a CIR pro
ess stays a.s. stri
tly positive, as the Feller 
ondition µ̄K̄ ≥ σ̄2/2 is met.

Moreover, it turns out that ηt =
1
Kt

(2ρ̄−µ̄)+ 1
K2

t

(µ̄K̄− σ̄2) > 0 due to our assumptions. Conditions ii)

and iii) both hold by showing

E0,κ







(

supt∈[0,T ] Kt

)2

(

inft∈[0,T ] Kt

)2






< ∞.

Thanks to Hölder's inequality, with qt =
1
Kt

, we have

E0,κ







(

supt∈[0,T ]Kt

)2

(

inft∈[0,T ]Kt

)2






≤ E0,κ

[

sup
t∈[0,T ]

K8
t

]
1
4

E0,κ

[

sup
t∈[0,T ]

q
8
3
t

]
3
4

. (23)

Sin
e the drift of the CIR pro
ess is bounded above, we 
an isolate the lo
al martingale part of K and

use the Burkholder-Davis-Gundy inequalities.

5

With appropriate positive 
onstants c̄n, we obtain

E0,κ

[

sup
t∈[0,T ]

K8
t

]

≤ c̄1

{

κ8 +
(

µ̄K̄T
)8

+ E0,κ

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

σ̄
√

Ks dW
K
s

∣

∣

∣

∣

8
]}

(24)

≤ c̄2







κ8 +
(

µ̄K̄T
)8

+ E0,κ





(

∫ T

0

σ̄2Ks ds

)4










.

The latter expe
tation is �nite be
ause all positive moments of the CIR pro
ess are �nite (see, e.g.,

Filipovi
 and Mayerhofer (2009)).

It remains to show that the se
ond term on the right-hand side of (23) is �nite. By It�'s formula, the

pro
ess qt =
1
Kt

has the dynami
s

dqt =
(

µ̄qt −
(

µ̄K̄ − σ̄2
)

q2t
)

dt− σ̄q
3
2
t dWK

t .

With these preparations, we pro
eed similarly to (24):

E0,κ

[

sup
t∈[0,T ]

q
8
3
t

]

≤ c̄3







κ− 8
3 +

(

µ̄2T

4
(

µ̄K̄ − σ̄2
)

)
8
3

+ E0,κ

[

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

σ̄q
3
2
s dWK

s

∣

∣

∣

∣

8
3

]







≤ c̄4







κ− 8
3 +

(

µ̄2T

4
(

µ̄K̄ − σ̄2
)

)
8
3

+ E0,κ





(

∫ T

0

σ̄2q3s ds

)
4
3











.

5

For every m > 0, there exist universal positive 
onstants km and Km su
h that

kmE
[

〈M〉mτ
]

≤ E

[

(

max
t≤τ

|Mt|

)2m
]

≤ KmE
[

〈M〉mτ
]

for every 
ontinuous lo
al martingale M with M0 = 0 and every stopping time τ . See, e.g., Karatzas and Shreve (2000),

Chapter 3, Theorem 3.28.
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We are done, sin
e E0,κ

[

(
∫ T

0
q3s ds)

4
3

]

≤ c̄5
∫ T

0
E0,κ[q

4
s ] ds, and the fourth moment of the inverse CIR

pro
ess is �nite whenever µ̄K̄ > 2σ̄2
(see, e.g., Ahn and Gao (1999) for an expli
it 
al
ulation of

negative moments of the CIR pro
ess).

6 Example models without WR-BR stru
ture

In this se
tion, we provide examples that do not follow the WR-BR stru
ture. In parti
ular, we

show that 
ases of WR-BR-WR stru
ture 
an o

ur: when a large number of shares remains to

be pur
hased, we may �nd that it is optimal to wait in spite of buying being optimal if a smaller

number of shares is remaining. We �rst 
onsider a tra
table model with two s
enarios and thereafter

provide numeri
al results for a CIR model in dis
rete time. All of our examples are in dis
rete time

with trading o

urring at three points in time. The following proposition establishes that WR-BR

stru
ture always applies if trading o

urs at only two points in time.

Proposition 6.1. (WR-BR stru
ture for two trading instan
es).

Let N = 1, i.e. 0 = t0 < t1 = T , and denote a0 := e−
∫ t1
t0

ρsds
. Then the value fun
tion has WR-BR

stru
ture with

V dis (t0, y, κ) =
1

2
Et0,κ[KT ]y

2 + a0y −

{

[(Et0,κ[KT ]−κa0)y−(1−a0)]
2

2κ+2Et0,κ[KT ]−4κa0
if y > c (t0, κ)

0 otherwise

}

,

c (t0, κ) =

{ 1−a0

Et0,κ[KT ]−κa0
if Et0,κ[KT ] > κa0

∞ otherwise

}

.

Proof. We know that Udis(t1, δ, x, κ) = (δ + κ
2x)x. The assertion follows from

Udis(t0, δ, x, κ) = min
ξ∈[0,x]

{(

δ +
κ

2
ξ
)

ξ + Et0,κ

[

Udis (t1, (δ + κξ)a0, x− ξ,KT )
]

}

.

Note that we have not made any spe
i�
 assumptions on the distribution of KT in the proof of

Proposition 6.1.

6.1 A model with two s
enarios in dis
rete time

Let us assume that the pro
ess K is not driven by a di�usion, but instead is given by a �nite number

of s
enarios. The 
ase of a single s
enario implies a deterministi
 evolution of K whi
h always results

in a WR-BR stru
ture. We therefore fo
us on the se
ond simplest 
ase of two equally likely s
enarios

A and B, i.e. Ω = {ωA, ωB}, and 
onsider three trading instan
es {t0, t1, t2}, i.e. N = 2. To fully

spe
ify this two s
enario model, we need to 
hoose seven 
onstants

a0 := e−
∫ t1
t0

ρsds, a1 := e−
∫ t2
t1

ρsds, κ0, κ
A
1 := Kt1 (ωA) , κ

A
2 := Kt2(ωA), κ

B
1 := Kt1(ωB), κ

B
2 := Kt2(ωB).

Proposition 6.2. With the parameter values given in Figure 1, the optimal strategy is of WR-BR-

WR stru
ture, i.e., there are two threshold values 0 < cu < cl < ∞ su
h that the buy region at time

t0 is given by Brt0 = (cu, cl].
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Figure 1: Seven 
onstants that spe
ify the two s
enario model with three trading instan
es.

Proof. The optimal strategy is determined by ξ0, ξ
A
1 and ξB1 . Sin
e c(t1, κ

A
1 ) = c(t1, κ

B
1 ) = 1 =: c(t1)

by Proposition 6.1, we see that ξA1 > 0 if and only if ξB1 > 0.

Let us now 
onsider a given trade ξ0 at time t0 and assume optimal trading thereafter. This results

in a 
ost of

Ũdis(t0, δ, x, κ0; ξ0) :=
(

δ +
κ0

2
ξ0

)

ξ0 + E
[

Udis(t1, (δ + κ0ξ0)a0, x− ξ0, κ1)
]

.

It is easy to see that Ũdis
is pie
ewise quadrati
 in ξ0. For the se
tion of ξ0 where the optimal ξ1 is

positive (ξ1 > 0), a straightforward 
al
ulation shows that the quadrati
 
oe�
ient is negative. Ũdis

therefore 
annot attain its minimum in the interior of this se
tion; the optimal strategy therefore

satis�es ξ0 = 0, ξ1 = 0 or ξ0 = ξ1 = 0.

Using Proposition 6.1, we easily 
al
ulate that for trading only at times t0 and t2, we have

cl := c0,2(t0) < 1/a0 = c(t1)/a0.

Hen
e (cl, 1/a0] must be a subset of the buy region Brt0 . For y > c(t1)/a0 = 1/a0, we need to 
ompare

the 
ost U0,2
of optimally trading only at times t0 and t2 with the 
ost U1,2

of optimally trading only

at time t1 and t2. Using the parameter values given in Figure 1, we �nd that the quadrati
 
oe�
ient

of U0,2
is larger than the quadrati
 
oe�
ient of U1,2

; therefore there must be an interse
tion point

cu > cl where U
1,2 = U0,2

. We then have for y ≤ cl that U
1,2 = U0,2

and the optimal strategy trades

neither at t0 nor t1, for cl < y < cu that U0,2 < U1,2
and the unique optimal strategy trades at t0

but not at t1, for y = cu that U0,2 = U1,2
and there are two optimal strategies (one trading at t0 but

not t1, and one trading at t1 but not t0), and for y > cu that U0,2 > U1,2
and the unique optimal

strategy trades at t1 but not at t0.

To illustrate the dynami
s of the optimal strategy, we take di�erent x and plot

ξ 7→ Ũdis (t0, 1, x, 1.95; ξ)

in Figure 2. When the total order is as small as x = 0.9, it is optimal not to do an initial trade. The

transition from wait to buy region is approximately at x = 0.95. For x = 1, we are in the buy region

and one optimally trades about two per
ent of the total order at time t0. But at x = 5.75, we swit
h
from buy to wait region and stay in the wait region for all larger values of x. The graph for x = 5.75
illustrates the non-uniqueness of the optimal strategy at the transition from buy to wait region.

Intuition might suggest that the larger the remaining position x at time t0, the larger the initial

trade ξ0. The downside of trading at time t0 is that the full initial impa
t δ is in�uen
ing the 
ost

fun
tional (at later points in time this initial impa
t is partially de
ayed already). The upside is a
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more balan
ed distribution of new impa
t a
ross an additional time point (any impa
t generated at

time t0 will already be partially de
ayed at time t1). These two e�e
ts are the only drivers in the


ase of deterministi
 K, and the se
ond e�e
t grows faster in the remaining position x than the �rst

e�e
t. If K evolves sto
hasti
ally, then a third e�e
t 
omes into play: trading at times after t0 
an

respond to new information gained about K (su
h as whether s
enario A or B o

urred). This e�e
t


an dominate the se
ond e�e
t for large remaining positions x.

0.005 0.010 0.015 0.020Ξ

1.0576

1.0578

1.0580

1.0582

Costs
x � 0.9®Wait

0.01 0.02 0.03 0.04 Ξ

1.2498

1.2499

1.2500

1.2501

Costs
x � 1® Buy

0.5 1.0 1.5 Ξ
25.56

25.57

25.58

25.59

25.60

Costs
x � 5.75® Buy or Wait

2 4 6 8 10 Ξ
276.5

277.0

277.5

278.0

278.5

279.0

279.5

Costs
x � 20®Wait

Figure 2: For the parameters from Figure 1 and total order size x = 0.9, 1, 5.75, 20, the graphs plot the

dependen
e of the 
osts Ũdis (t0, 1, x, 1.95; ξ) on the initial trade ξ.

Let us now analyze the situation for di�erent values of κ0 while keeping the other model parameters

in
luding κA
1 , κ

B
1 , κ

A
2 and κB

2 �xed. Figure 3 indi
ates for ea
h point (κ0, x) if it belongs to the buy

or wait region. It is 
reated by 
omputing the optimal initial trade ξ(κ0, x) of Ũdis (t0, 1, x, κ0; ξ)
analyti
ally. WR-BR-WR stru
ture o

urs for κ0 ∈ (1.94, 2). The upper barrier from buy to wait

region has an asymptote at κ0 = 1.94. For the 
ase κ0 = 1.95 that we dis
ussed in Figure 2, the small

dots on the right-hand side of Figure 3 point out the transitions from wait to buy region and buy to

wait region respe
tively. For expensive κ0 ≥ 2, we are not trading irrespe
tively of the size of the total
order. For inexpensive κ0 ≤ 1.94, we have the usual WR-BR situation. On the interval in between,

the large investor has an in
entive not to trade for large positions x. The resilien
e between t0 and t1
is extremely low and waiting until t1 has the advantage of gaining information whether s
enario A
or B has o

urred. That is there is a tradeo� between gaining information by waiting until the next

time instan
e and attra
ting resilien
e by trading right now.

The two s
enario model in this se
tion 
an be approximated by a di�usive model that has almost half

of its s
enarios arbitrarily 
lose to s
enario A and almost another half arbitrarily 
lose to s
enario B.

For su
h a di�usive model it 
an be shown that it does not exhibit a WR-BR stru
ture.
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Figure 3: For the parameters from Figure 1, but di�erent values of κ0, we illustrate the wait and buy region.

Looking more 
losely at the large dot (κ0, x) = (2, 1) yields the pi
ture on the right-hand side. The buy region

has the shape of a wedge.

6.2 Cox-Ingersoll-Ross pro
ess in dis
rete time

In Se
tion 5, we have 
onsidered examples of di�usive models and shown that they have WR-BR

stru
ture if 
ertain 
onditions are met. For the 
ase of the CIR pro
ess

6

dKs = µ̄
(

K̄ −Ks

)

ds+ σ̄
√

KsdW
K
s ,

let us now 
onsider three trading times {t0, t1, t2} with

t0 = 0, t1 = 0.0072, t2 = 1.0072, ρ ≡ 1.3863,

µ̄ = 0.6931, K̄ = 1, σ̄ = 5.2523. (25)

This example violates the 
onditions of Proposition 5.3. It is inspired by the two s
enario model

of the previous subse
tion. E.g., t1 is 
lose to t0, and the high volatility makes illiquid s
enarios

with Kt >> K̄ likely to o

ur.

Using Proposition 6.1 and the density fun
tion of the CIR pro
ess together with a numeri
al integration

s
heme, we 
an 
ompute Ũdis (t0, 1, x, κ0; ξ) from dynami
 programming. For ea
h point (κ0, x), we

an 
al
ulate the 
osts for di�erent trades ξ0 from an equidistant grid {0, dξ, ..., x}. We 
an then infer

that the point (κ0, x) belongs to the wait region if the 
osts for ξ = 0 are smaller than the 
osts on

the remaining grid.

Exe
uting this s
heme for several points (κ0, x) yields Figure 4. As for the two s
enario model, there

exist 
hoi
es of κ0 that lead to WR-BR-WR stru
ture. But instead of a wedge-shaped buy region, we

get a tongue-shaped upper wait region, whi
h is lo
ated around the mean-reversion level K̄ = 1.

7 Pro�table round trip strategies

So far we have only 
onsidered one side of the limit order book. In this se
tion, we extend our model

and in
lude the other side of the limit order book. In su
h two-sided limit order books, round trip

strategies are possible and we determine under whi
h 
onditions they 
an be pro�table.

Without loss of generality we now 
onsider the starting time 0. We model strategies that both buy

and sell the asset as a pair (Θ, Θ̃), where Θ ∈ A0 and Θ̃ ∈ A0 des
ribe the number of shares whi
h

6

See Fruth (2011) for a WR-BR-WR example for the time-inhomogeneous GBM and three trading instan
es.
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Figure 4: This �gure shows a WR-BR-WR example for the CIR pro
ess with parameters (25) and three

trading instan
es. Points (κ0, x) ∈ {0.1, 0.2, ..., 2.1}×{0.2, 0.4, ..., 8} are 
onsidered. The wait region is shaded

bla
k.

the investor bought respe
tively sold starting from time 0. The position at time t is given by Θt− Θ̃t,

and a round trip strategy is 
hara
terised by ΘT+ = Θ̃T+. Re
all that, by de�nition of A0, ΘT+ and

Θ̃T+ are bounded random variables. If At and Bt are the best ask and best bid pri
es respe
tively,

then the total 
ost of a strategy (Θ, Θ̃) is given by

C(Θ, Θ̃) :=

∫

[0,T ]

(

At +
Kt

2
∆Θt

)

dΘt −

∫

[0,T ]

(

Bt −
Kt

2
∆Θ̃t

)

dΘ̃t. (26)

We now present two di�erent models for two-sided limit order books. The 
orresponding models for

deterministi
K are dis
ussed in Fruth, S
höneborn, and Urusov (2014). First, we 
onsider a two-sided

limit order book with bid-ask spread that depends on trading a
tivity.

Model 7.1. (Dynami
 spread model).

The best ask and best bid pri
e pro
esses A and B in (26) are modelled as At := Au
t + Dt and

Bt := Bu
t − Et, where the una�e
ted best ask and best bid pri
e pro
esses Au

and Bu
are 
àdlàg

H1
-martingales with Bu

t ≤ Au
t for all t ∈ [0, T ], and

Dt := D0e
−

∫

t

0
ρsds +

∫

[0,t)

Kse
−

∫

t

s
ρududΘs, t ∈ [0, T+], (27)

Et := E0e
−

∫

t

0
ρsds +

∫

[0,t)

Kse
−

∫

t

s
ρududΘ̃s, t ∈ [0, T+], (28)

with some given non-negative initial pri
e impa
ts D0 ≥ 0 and E0 ≥ 0.

Proposition 7.2. (Pro�table round trips in the dynami
 spread model).

In the dynami
 spread model round trip trading strategies 
annot be pro�table. That is, for all κ > 0,
D0 ≥ 0 and E0 ≥ 0, for all admissible (Θ, Θ̃) with ΘT+ = Θ̃T+, we have

E0,κ[C(Θ, Θ̃)] ≥ 0.

Furthermore, the expe
ted exe
ution 
osts of a buy (or sell) program that builds up a deterministi


position of say x ∈ R shares 
annot be de
reased by intermediate sell (resp. buy) trades. That is, for

all κ > 0, D0 ≥ 0 and E0 ≥ 0, for any admissible (Θ, Θ̃) with ΘT+ − Θ̃T+ = x > 0, there is an

admissible Θ̂ with Θ̂T+ = x su
h that E0,κ[C(Θ, Θ̃)] ≥ E0,κ[C(Θ̂, 0)]; also the symmetri
 statement

with x < 0 holds true.
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We omit the proof sin
e it is a dire
t extension of the 
orresponding Proposition 3.4 in Fruth,

S
höneborn, and Urusov (2014). Let us now 
onsider an alternative model for a two-sided limit

order book in whi
h the spread is 
onstantly zero.

Model 7.3. (Zero spread model).

The best ask and best bid pri
e pro
esses in (26) are modelled as A
l
t := B

l
t := Su

t +D
l
t , where the

una�e
ted pri
e Su
is a 
àdlàg H1

-martingale, and

D
l
t := D

l
0e

−
∫

t

0
ρs ds +

∫

[0,t)

Kse
−

∫

t

s
ρu du(dΘs − dΘ̃s), t ∈ [0, T+], (29)

with some given initial pri
e impa
t D
l
0 ∈ R.

There is a subtle di�eren
e in understanding pri
e manipulation between the dynami
 and zero spread

models. In the dis
ussion of pro�table round trip strategies in the dynami
 spread model (see Propo-

sition 7.2) we 
onsidered arbitrary initial values D0 ≥ 0 and E0 ≥ 0 in (27) and (28). In 
ontrast

to this, in the dis
ussion of pro�table round trip strategies in the zero spread model (Theorem 7.4,

whi
h follows) we will 
onsider D
l
0 = 0 in (29). Whenever D

l
0 6= 0 we usually have pro�table round

trip strategies in the zero spread model, and this is due not to properties of the model, but rather to

the fa
t that both buy and sell orders are exe
uted at the same pri
e, su
h that pro�table round trips

will make use of the initial deviation D
l
0 from the una�e
ted pri
e Su

and of the fa
t that, due to the

resilien
e, the absolute value of this deviation de
reases to zero in the absen
e of trading.

7

In order to study pro�table round trip strategies in the zero spread model let us introdu
e the notations

Θl := Θ− Θ̃

for the 
omposite strategy, whi
h in
ludes both buy and sell orders, and, by analogy with (5),

Jl(Θl) := Jl(t, δ,Θl, κ) := J
l
T (t, δ,Θ

l, κ) := Et,δ,κ

[

∫

[t,T ]

(

Dl
s +

Ks

2
∆Θl

s

)

dΘl
s

]

for the 
ost fun
tion.

8

We will sometimes write J
l
T with the subs
ript T to emphasize the time horizon

expli
itly. As in (5), the subs
ript in Et,δ,κ means that we start at time t with D
l
t = δ and Kt = κ.

Let us 
onsider di�usion setting (14) for all �nite time horizons T < ∞ and introdu
e the fun
tion

η : R+ × (0,∞) → R by the formula

η(s, κ) :=
2ρs
κ

+
µ(s, κ)

κ2
−

σ2(s, κ)

κ3
,

that is, we have ηs = η(s,Ks) for ηs as in Assumption 4.1 i).

7

See Remark 8.2 in Fruth, S
höneborn, and Urusov (2014) for more detail on this point.

8

The pre
ise explanation of how this formula 
omes into play is similar to the explanation in Footnote 1 on page 4.

Namely, 
onsider a strategy (Θ, Θ̃) ∈ At × At that a
quires Θ
l
T+ = x shares on the time interval [t, T ] (x ∈ R is

deterministi
). The total 
ost of this strategy is (
f. (26))

∫

[t,T ]

(

Su
s +D

l
s +

Ks

2
∆Θs

)

dΘs −

∫

[t,T ]

(

Su
s +D

l
s −

Ks

2
∆Θ̃s

)

dΘ̃s.

A 
al
ulation involving integration by parts and using that Su
is an H1

-martingale as well as that Θ and Θ̃ are bounded

reveals that the expe
ted total 
ost equals

Su
t x+ Et,δ,κ

[

∫

[t,T ]

(

D
l
s +

Ks

2
∆Θs

)

dΘs −

∫

[t,T ]

(

D
l
s −

Ks

2
∆Θ̃s

)

dΘ̃s

]

.

Again, the �rst summand, whi
h is trivial and moreover vanishes for round trip strategies, des
ribes the expe
ted 
ost

that o

urs due to trading in the una�e
ted pri
e. The se
ond summand in the latter formula, whi
h des
ribes the

expe
ted liquidity 
ost, is in general larger than Jl(t, δ,Θl, κ), but it is equal to Jl(t, δ,Θl, κ) whenever ΘT+ + Θ̃T+

equals the variation of Θl
over [t, T ]. It remains to noti
e that the latter 
an always be assumed without loss of

generality (and, moreover, it does not make sense e
onomi
ally to 
onsider strategies (Θ, Θ̃) with ΘT+ + Θ̃T+ being

stri
tly greater than the variation of Θl
over [t, T ] be
ause this means that buying and selling happen simultaneously).
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Theorem 7.4. (Pro�table round trips in the zero spread model).

In the zero spread model suppose that Assumption 4.1 ii) holds for all �nite T < ∞ and

(A) the resilien
e is bounded away from zero (ρs ≥ ρ̄ > 0) as well as, for all t ≥ 0 and κ > 0, the
fun
tion s 7→ Et,κ[Ks], s ∈ [t,∞), is bounded.

We then have the following 
lassi�
ation:

1. If η ≥ 0 everywhere, then all round trip strategies starting at any time t ≥ 0 with D
l
t = 0 have

nonnegative 
osts.

2. Under Assumption 4.1 iii), if η < 0 in some [t, t+∆t]× [κ− ǫ, κ+ ǫ], then there are pro�table

round trip strategies starting at t with D
l
t = 0.9

Assumption (A) is satis�ed for a wide range of pro
esses K in
luding stationary pro
esses su
h as the

CIR pro
ess as well as the GBM pro
ess with non-positive drift (µ̄ ≤ 0) whenever the resilien
e is

bounded away from zero.

We will see in the proof that the role of Assumption (A) is to ensure that liquidation of a random but

bounded position that the investor has at some time t+∆t 
an be a
hieved for arbitrarily small 
ost if

D
l
t+∆t+ = 0 and the time horizon T is large. The latter property seems natural to expe
t in reasonable

models when the resilien
e is bounded away from zero. In fa
t, one might repla
e Assumption (A)

with any other assumption that ensures the property stated above.

Parts ii) and iii) of Assumption 4.1 are required for some te
hni
al aspe
ts of our proof. That is, the

main message of Theorem 7.4 
an be somewhat loosely des
ribed as follows: if η ≥ 0 everywhere, then
round trip strategies 
annot be pro�table; if η < 0 somewhere,

10

then pro�table round trip strategies

exist.

Proof. We 
an extend the proof of (15) to the zero spread model and �nd that the 
ost fun
tion Jl

satis�es

Jl(t, δ,Θl, κ) =
1

2
Et,δ,κ

[

(D
l
T+)

2

KT

−
δ2

κ
+

∫

[t,T ]

ηs(D
l
s)

2 ds

]

(30)

with ηs ≡ η(s,Ks) as in Assumption 4.1 i). More pre
isely, instead of monotone 
onvergen
e

in (16) we need to use dominated 
onvergen
e, whi
h applies be
ause Θ and Θ̃ are bounded and

Et,κ[sups∈[t,T ]Ks] < ∞ (the latter follows from Assumption 4.1 ii)), and again dominated 
onver-

gen
e works in (17) (based on Assumption 4.1 ii)). As for (18), we use monotone 
onvergen
e in the

�rst 
ase (η ≥ 0), while dominated 
onvergen
e applies in the se
ond 
ase (due to Assumption 4.1 iii)).

In parti
ular, when we start at time t with D
l
t = 0, we have

Jl(t, 0,Θl, κ) =
1

2
Et,0,κ

[

(D
l
T+)

2

KT

+

∫

[t,T ]

ηs(D
l
s )

2 ds

]

,

whi
h establishes the statement in the �rst 
ase (η ≥ 0 everywhere).

Similarly to (30) we establish that, for any stopping time τ with t ≤ τ ≤ T , it holds

J
l
T (t, δ,Θ

l, κ) =
1

2
Et,δ,κ

[

(D
l
τ+)

2

Kτ

−
δ2

κ
+

∫

[t,τ ]

ηs(D
l
s)

2 ds

]

+ Et,δ,κ

[

∫

(τ,T ]

(

Dl
s +

Ks

2
∆Θl

s

)

dΘl
s

]

.

(31)

9

As pointed out above pro�table round trip strategies exist also for D
l
t being di�erent from zero, but the relevant

question in the zero spread model is the one for D
l
t = 0.

10

Let us also noti
e that, if η(t, κ) < 0 at some point (t, κ) and the fun
tions ρ, µ and σ are 
ontinuous, then η < 0
in some [t, t+∆t]× [κ− ǫ, κ+ ǫ].
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We now make use of (31) to 
onstru
t a pro�table round trip strategy in the se
ond 
ase. Starting at

(t, κ) with D
l
t = 0, let us de�ne the stopping time

τ := (t+∆t) ∧ inf {s ≥ t | Ks /∈ (κ− ǫ, κ+ ǫ)}

and 
onsider the following trading strategy. First, buy x > 0 units of the asset at time t. This results

in D
l
t+ = κx. At time τ , we have D

l
τ = κxe−

∫

τ

t
ρs ds

and sell y =
Dl

τ

Kτ
units of the asset, resulting in

D
l
τ+ = 0. We do nothing in (τ, t + ∆t) and then liquidate the position x − y with a uniform speed

between t + ∆t and T . Noti
e that the position x − y is random (it depends on Kτ ), but bounded

(due to the 
onstru
tion of τ). Summarizing, we 
onsider the following round trip strategy: Θ
l
t = 0,

Θ
l
s = x for s ∈ (t, τ ], Θ

l
s = x− y for s ∈ (τ, t+∆t],

Θl
s = x− y +

s− t−∆t

T − t−∆t
(y − x), s ∈ (t+∆t, T ],

and Θ
l
T+ = Θ

l
T = 0. An appli
ation of (31) in this 
ase yields

J
l
T (t, 0,Θ

l, κ) =
1

2
Et,0,κ

[

∫

[t,τ ]

ηs(D
l
s)

2 ds

]

+ Et,0,κ

[

∫

(t+∆t,T ]

Dl
s dΘ

l
s

]

.

The �rst term on the right-hand side is stri
tly negative (we are 
onsidering the se
ond 
ase) and

does not depend on T . Below we present a 
al
ulation showing that the se
ond term goes to zero as

T goes to in�nity, whi
h means that, for a su�
iently large T , we 
onstru
ted a round trip strategy

with stri
tly negative 
ost, i.e. with stri
tly positive pro�t.

Relying on Assumption (A) we �nally show that

Et,0,κ

[

∫

(t+∆t,T ]

Dl
s dΘ

l
s

]

−−−−→
T→∞

0 (32)

for the strategy des
ribed above. Re
all that D
l
τ+ = 0, hen
e D

l
t+∆t+ = 0. That is, for s ∈ (t+∆t, T ],

we have

Dl
s =

y − x

T − t−∆t

∫ s

t+∆t

Kue
−

∫

s

u
ρr dr du,

therefore,

Et,0,κ

[

∫

(t+∆t,T ]

Dl
s dΘ

l
s

]

= Et,κ

[

(y − x)2

(T − t−∆t)2

∫ T

t+∆t

∫ s

t+∆t

Kue
−

∫

s

u
ρr dr du ds

]

≤
const

(T − t−∆t)2
Et,κ

[

∫ T

t+∆t

∫ s

t+∆t

Kue
−

∫

s

u
ρr dr du ds

]

, (33)

where we used that the random variable (y − x)2 is bounded. Further,

Et,κ

[

∫ T

t+∆t

∫ s

t+∆t

Kue
−

∫

s

u
ρr dr du ds

]

=

∫ T

t+∆t

(

∫ T

u

e−
∫

s

u
ρr dr ds

)

Et,κ[Ku] du

≤
1

ρ̄

[

∫ T

t+∆t

Et,κ[Ku] du

]

≤ const (T − t−∆t).

Together with (33), we obtain (32). This 
ompletes the proof.
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The results of this se
tion reveal a link between the models for two-sided limit order books: If As-

sumption 4.1 i) holds, then optimal strategies in the dynami
 spread model are of WR-BR stru
ture

and pro�table round trip strategies do not exist in the zero spread model. If Assumption 4.1 i) is

violated, then optimal strategies in the dynami
 spread model do not need to be of WR-BR stru
ture,

and round trip strategies in the zero spread model do not need to result in 
osts.

If only deterministi
 trading strategies are 
onsidered, then only the expe
ted evolution of K matters

and, in the 
ase µ(s, κ) is a�ne in κ, η̃s := 2ρs

Ks
+ µ(s,Ks)

K2
s

≥ 0 is su�
ient to prevent free (or even

pro�table) deterministi
 round trip strategies. Sin
e ηs = η̃s −
σ2(s,Ks)

K3
s

< η̃s, we 
an have η̃s ≥ 0

while ηs < 0. For some sto
hasti
 models for K, we therefore have only sto
hasti
 pro�table round

trip strategies but no deterministi
 pro�table round trip strategies.

8 Con
lusion

We propose a limit order book model with sto
hasti
 liquidity that 
aptures random �u
tuations of

the limit order book depth. If the sto
hasti
 liquidity in this model follows a di�usion pro
ess meeting


ertain 
onditions, then optimal trade exe
ution follows the 
lassi
al wait region / buy region stru
ture

often observed in limit order book models with stati
 or deterministi
ally time dependent liquidity.

For other sto
hasti
 liquidity pro
esses, the optimal trade exe
ution strategy 
an take more general

forms; for example, multiple wait regions 
an o

ur, and optimal trade sizes do not need to depend

monotoni
ally on the size of the position that remains to be liquidated. The 
onditions for the wait

region / buy region stru
ture also result in all round trip strategies generating positive 
osts even if

the zero spread model is assumed.
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